Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDC 621.396.96
UDC 621.396.969
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
Currently, methods of radar remote sensing at small incidence angles (from the vertical to 15∘) are actively developed. An important application of these methods is the determination of the presence and sea ice concentration. This paper presents an approach to numerical simulation of an experiment in which a reflecting surface with different sea ice concentrations is modeled and then the characteristics of the radar signal reflected by this surface for a given measurement geometry are modeled. Without loss of generality, in this paper we will consider a specific geometry of the DPR (Dual-frequency Precipitation Radar) radar on the GPM (Global Precipitation Measurement) mission satellite and only the Ku-band of this radar. The signal reflected by sea waves will be calculated within the Kirchhoff approximation. Since there is no generally accepted model for the signal scattered by the sea ice at small incidence angles, an empirical formula obtained from DPR data will be used as a model. The paper discusses a method for determining sea ice concentration using radar sensing data at low incidence angles.
sea ice, sea waves, backscattering cross section, small incidence angles, quasi-specular reflection, sea ice concentration
1. Bass F., Fuchs I. Wave scattering on a statistically uneven surface. — Moscow : Nauka, 1972. — P. 424. — (In Russian).
2. Zabolotskikh E. V., Khvorostovsky K. S., Zhivotovskaya M. A., et al. Satellite microwave remote sensing of the Arctic sea ice. Review // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2023. — Vol. 20, no. 1. — P. 9–34. — DOI:https://doi.org/10.21046/2070-7401-2023-20-1-9-34. — (In Russian).
3. Karaev V. Yu., Panfilova M. A., Mitnik L. M., et al. Backscattering of microwave radar signal by first year sea ice at small incidence angles // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2021. — Vol. 18, no. 3. — P. 229–241. — DOI:https://doi.org/10.21046/2070-7401-2021-18-3-229-241. — (In Russian).
4. Radar methods and means of operational remote sensing of the Earth from aerospace carriers / ed. by S. N. Konyukhov, V. I. Dranovsky, V. N. Tsymbal. — Kyiv : Aviadiagnostika, 2007. — P. 440. — (In Russian).
5. Chan M. A., Comiso J. C. Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat // Journal of Climate. — 2013. — Vol. 26, no. 10. — P. 3285–3306. — DOI:https://doi.org/10.1175/jcli-d-12-00204.1.
6. Comiso J. C., Cavalieri D. J., Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data // IEEE Transactions on Geoscience and Remote Sensing. — 2003. — Vol. 41, no. 2. — P. 243–252. — DOI:https://doi.org/10.1109/tgrs.2002.808317.
7. Hauser D., Tison C., Amiot T., et al. SWIM: The First Spaceborne Wave Scatterometer // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 3000–3014. — DOI:https://doi.org/10.1109/tgrs.2017.2658672.
8. JAXA. GPM Data Utilization Handbook. Version 1.0. — Japan Aerospace Exploration Agency, 2014. — 92 p.
9. Karaev V., Ponur K., Panfilova M., et al. Radar Sensing of SEA ICE at the Small Incidence Angles: Simulation and Comparison of the Different Approaches // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2022. — P. 3818–3821. — DOI:https://doi.org/10.1109/igarss46834.2022.9883231.
10. Laxon S. W., Giles K. A., Ridout A. L., et al. CryoSat-2 estimates of Arctic sea ice thickness and volume // Geophysical Research Letters. — 2013. — Vol. 40, no. 4. — P. 732–737. — DOI:https://doi.org/10.1002/grl.50193.
11. Mitnik L., Kuleshov V., Baranyuk A., et al. Monitoring of the Arctic Region Using Optical and Infrared Data from the Highly Elliptical Arktika-M Space System and Microwave Measurements from Low Earth Orbit Satellites // IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. — 2022. — P. 7194–7197. — DOI:https://doi.org/10.1109/igarss46834.2022.9883384.
12. Nekrasov A., Khachaturian A., Labun J., et al. Towards the Sea Ice and Wind Measurement by a C-Band Scatterometer at Dual VV/HH Polarization: A Prospective Appraisal // Remote Sensing. — 2020. — Vol. 12, no. 20. — P. 3382. — DOI:https://doi.org/10.3390/rs12203382.
13. Panfilova M., Karaev V. Sea Ice Detection Method Using the Dependence of the Radar Cross-Section on the Incidence Angle // Remote Sensing. — 2024. — Vol. 16, no. 5. — P. 859. — DOI:https://doi.org/10.3390/rs16050859.
14. Peureux C., Longépé N., Mouche A., et al. Sea-Ice Detection From Near-Nadir Ku-Band Echoes From CFOSAT/SWIM Scatterometer // Earth and Space Science. — 2022. — Vol. 9, no. 6. — DOI:https://doi.org/10.1029/2021ea002046.
15. Ryabkova M., Karaev V., Guo J., et al. A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 10. — P. 7104–7134. — DOI:https://doi.org/10.1029/2018jc014804.
16. Zabolotskikh E., Balashova E., Kudryavtsev V., et al. Synergistic Use of Satellite Scatterometer, SAR and Altimeter Data to Study First Year Sea Ice Properties // 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. — IEEE, 2021. — P. 5633–5636. — DOI:https://doi.org/10.1109/igarss47720.2021.9553828.




