Astana, Kazakhstan
Astana, Kazakhstan
Astana, Kazakhstan
Kazan, Kazan, Russian Federation
Astana, Kazakhstan
employee from 01.01.2022 until now
Astana, Russian Federation
Almaty, Kazakhstan
Almaty, Kazakhstan
VAK Russia 1.6.10
VAK Russia 1.6.11
VAK Russia 1.6.22
VAK Russia 1.6
UDC 52
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.00
CSCSTI 90.00
CSCSTI 36.00
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 21.00.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 261
Russian Library and Bibliographic Classification 263
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 631
Russian Trade and Bibliographic Classification 632
Russian Trade and Bibliographic Classification 633
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
Processing and adjustment of gravity measurements represent an essential scientific and practical challenge in geophysics and geodesy, necessitating efficient and reliable software solutions. In this article, we review five modern open-source software packages for processing gravity measurements, namely GSAdjust, GRAVS2, gTools, GravRelAdj, and GRAVITAS. Additionally, adjustments were performed using a current Python library (statsmodels), which demonstrated good results, providing an objective comparison with the presented software products. The work is focused on optimizing the processing of data from relative and absolute gravity meters, including network adjustment with one fixed point and multiple fixed points. The comparison was conducted using high-precision gravity measurements obtained from the A10 absolute gravity meter and CG-5 relative gravity meters at the Kazan gravity calibration line. The obtained results indicate that GSAdjust and GRAVS2 offer the most promising balance between usability and reliability. GSAdjust provides a user-friendly graphical interface and supports a range of analysis tasks, while GRAVS2 offers speed and robustness, albeit with a command-line interface. A modernization of the GRAVS2 software product for automated processing of large volumes of data is proposed. The study also emphasizes the importance of synchronizing absolute and relative measurements, incorporating nonlinear vertical gradients, and implementing robust adjustment methods to enhance the accuracy and reliability of gravity network solutions.
gravity network, gravity meter, adjustment, software, Python
1. Battaglia M., Calahorrano-Di Patre A. and Flinders A. F. gTOOLS, an Open-Source MATLAB Program for Processing High Precision, Relative Gravity Data for Time-Lapse Gravity Monitoring // Computers & Geosciences. — 2022. — Vol. 160. — P. 105028. — https://doi.org/10.1016/j.cageo.2021.105028.
2. Chen Sh., Zhuang J., Li X., et al. Bayesian Approach for Network Adjustment for Gravity Survey Campaign: Methodology and Model Test // Journal of Geodesy. — 2018. — Vol. 93, no. 5. — P. 681–700. — https://doi.org/10.1007/s00190-018-1190-7. EDN: https://elibrary.ru/KZQZTR
3. Gabalda G., Bonvalot S. and Hipkin R. CG3TOOL: An Interactive Computer Program to Process Scintrex CG-3/3M Gravity Data for High-Resolution Applications // Computers & Geosciences. — 2003. — Vol. 29, no. 2. — P. 155– 171. — https://doi.org/10.1016/S0098-3004(02)00114-0.
4. GSadjust v1.0 User Guide. — 2020. — URL: https://www.usgs.gov/software/gsadjust-graphical-user-interfaceprocessing-combined-relative-and-absolute-gravity.
5. Harris Ch. R., Millman K. J., van der Walt S. J., et al. Array Programming with NumPy // Nature. — 2020. — Vol. 585, no. 7825. — P. 357–362. — https://doi.org/10.1038/s41586-020-2649-2 EDN: https://elibrary.ru/IVEXXC
6. Hector B. and Hinderer J. pyGrav, a Python-based Program for Handling and Processing Relative Gravity Data // Computers & Geosciences. — 2016. — Vol. 91. — P. 90–97. — https://doi.org/10.1016/j.cageo.2016.03.010.
7. Hwang Ch., Wang Ch.-G. and Lee L.-H. Adjustment of Relative Gravity Measurements Using Weighted and Datum-Free Constraints // Computers & Geosciences. — 2002. — Vol. 28, no. 9. — P. 1005–1015. — https://doi.org/10.1016/S0098-3004(02)00005-5.
8. Kalen Ye. and Sermyagin R. Observation Files of CG-5 Gravity Meters for the Kazan Calibration Line in 2019. — 2025. — https://doi.org/10.5281/ZENODO.16308284.
9. Kazan Gravimetric Line : Description of the Type of Measuring Instrument / LLC "TNG-Kazangeofizika". — Kazan, Russia, 2016. — URL: https://fgis.gost.ru/fundmetrology/registry/4/items/379009.
10. Kennedy J. R. GSadjust. — 2021. — https://doi.org/10.5066/P9YEIOU8.
11. Koymans M. R. Web Application for Microgravity Campaign Analysis. — 2022. — https://doi.org/10.5281/ZENODO.6466388.
12. Lagios E. A FORTRAN IV Program for a Least-Squares Gravity Base-Station Network Adjustment // Computers & Geosciences. — 1984. — Vol. 10, no. 2/3. — P. 263–276. — https://doi.org/10.1016/0098-3004(84)90026-8.
13. McCubbine J., Tontini F. C., Stagpoole V., et al. Gsolve, a Python Computer Program with a Graphical User Interface to Transform Relative Gravity Survey Measurements to Absolute Gravity Values and Gravity Anomalies // SoftwareX. — 2018. — Vol. 7. — P. 129–137. — https://doi.org/10.1016/j.softx.2018.04.003.
14. Oja T. GRAVS2 Manual. Software for Relative Gravity Data Processing. — Tallinn, 2021. — URL: https://docs.google.com/document/d/13dG5Lp3x99OuriIaFnCpHbgse8to9pDzh3ju3fj1qbM/edit (visited on 02/08/2024).
15. Oja T. GRAVS2 - Processing Software of Relative Gravity Data. — 2022. — https://doi.org/10.13140/RG.2.2.25386.49603. — (Visited on 02/08/2024).
16. Oja T. GRAVS2 Software for Adjustment of Relative Gravity Data (Upgraded Version). — 2024. — URL: https://github.com/skimprem/GRAVS2 (visited on 02/08/2024).
17. Roman I. An Observational Method to Overcome Zero Drift Error in Field Instruments // Geophysics. — 1946. — Vol. 11, no. 4. — P. 466–490. — https://doi.org/10.1190/1.1437276.
18. Seabold S. and Perktold J. Statsmodels: Econometric and Statistical Modeling with Python // 9th Python in Science Conference. — 2010. — URL: https://www.statsmodels.org/stable/index.html. DOI: https://doi.org/10.25080/Majora-92bf1922-011
19. Sermiagin R., Kemerbayev N., Kassymkanova Kh.-K., et al. Selection of a Calibration System for Relative Gravimeters and Testing of the Processing Using the Example of the Zhetygen Calibration Baseline in Kazakhstan // Acta Geodaetica et Geophysica. — 2024. — Vol. 59, no. 4. — P. 381–404. — https://doi.org/10.1007/s40328-024-00454-x. EDN: https://elibrary.ru/ETZMTR
20. Sobrero F. S., Ahlgren K., Bevis M. G., et al. A Robust Approach to Terrestrial Relative Gravity Measurements and Adjustment of Gravity Networks // Journal of Geodesy. — 2024. — Vol. 98, no. 9. — P. 86. — https://doi.org/10.1007/s00190-024-01891-w. EDN: https://elibrary.ru/WVCNMF
21. Torge W. Gravimetry. — Berlin; New York : W. de Gruyter, 1989.
22. Wijaya D. D., Muhamad N. A., Prijatna K., et al. pyGABEUR-ITB: A FREE SOFTWARE FOR ADJUSTMENT OF RELATIVE GRAVIMETER DATA // GEOMATIKA. — 2019. — Vol. 25, no. 2. — P. 95. — https://doi.org/10.24895/JIG.2019.25-2.991.
23. Zhao J., Xu X., Wang L., et al. GravNetAdj: A MATLAB-based Data Processing Software for Gravity Network Adjustment // Earth Science Informatics. — 2024. — Vol. 17, no. 4. — P. 3839–3849. — https://doi.org/10.1007/s12145-024-01374-8. EDN: https://elibrary.ru/XXWXQB



