Аннотация и ключевые слова
Аннотация (русский):
The paper is devoted to the study of the Barents Sea wave climate, which was built on the basis of satellite altimetry data provided by ERS-1/2, GFO-1, Envisat, Cryosat-2, SARAL, Sentinel-3a/3b. A special statistical procedure has been applied to obtain a single dataset of Significant Wave Height (SWH) variability relative to ERS-1 satellite altimetry measurements for 1991–2021. This is the first time such a wind wave database has been created for the Barents Sea. For this time period a monthly mean SWH interannual trend was equal to +0.10 ± 0.06 m/decade. Seasonal variability of SWH interannual trends varies from +0.05 m/decade in March to +0.15 m/decade in September. Values of SWH trends over +0.12 m/decade are observed from July to November which is explained by steady interannual reduction of ice cover in the Barents Sea and by a significant increase in storm activity in the region. The obtained results show that, on the one hand, significant reduction in ice cover in the Barents Sea allows ice-free navigation for a longer time during a year, especially in Autumn, but on the other hand it increases wind fetch, which along with a significant increase in storm activity in the Barents Sea will lead to an increase of wind wave height in the Barents Sea. This will represent potential difficulties (and even danger) to navigation of ships designed for navigation in ice conditions and not intended for navigation in open waters of the world's oceans where large waves may be observed (e.g., icebreakers, barges, and other vessels).

Ключевые слова:
Barents Sea, Significant Wave Height (SWH), wave climate, satellite altimetry, GEOSAT, ERS-1/2, GFO-1, Envisat, Cryosat-2, SARAL, Sentinel-3a/3b
Список литературы

1. Amarouche L., Thibaut P., Zanife O. Z., et al. Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects // Marine Geodesy. — 2004. — Vol. 27, no. 1/2. — P. 171–197. — https://doi.org/10.1080/01490410490465210.

2. Atlas of Arctic / ed. by A. F. Treshnikov, E. S. Korotkevich, Yu. A. Kruchinin, et al. — Moscow : Main Directorate of Geodesy, Cartography under the Council of Ministers of the USSR, 1985. — 204 p. — (In Russian).

3. Brown G. The average impulse response of a rough surface and its applications // IEEE Transactions on Antennas and Propagation. — 1977. — Vol. 25, no. 1. — P. 67–74. — https://doi.org/10.1109/tap.1977.1141536.

4. Bué I., Lemos G., Semedo Á., et al. Assessment of satellite altimetry SWH measurements by in situ observations within 25 km from the coast // Ocean Dynamics. — 2024. — Vol. 74, no. 3. — P. 183–210. — https://doi.org/10.1007/s10236-024-01597-9.

5. Cabral I. S., Young I. R. and Toffoli A. Long-Term and Seasonal Variability of Wind and Wave Extremes in the Arctic Ocean // Frontiers in Marine Science. — 2022. — Vol. 9. — P. 802022. — https://doi.org/10.3389/fmars.2022.802022.

6. Collins C. O., Amador A., Babanin A., et al. Measuring Ocean Surface Waves [Preprint] // ESS Open Archive. — 2025. — https://doi.org/10.22541/essoar.175130482.28547248/v1.

7. Compo G. P., Whitaker J. S., Sardeshmukh P. D., et al. The Twentieth Century Reanalysis Project // Quarterly Journal of the Royal Meteorological Society. — 2011. — Vol. 137, no. 654. — P. 1–28. — https://doi.org/10.1002/qj.776.

8. Dumanskaya I. O. Regularities and features of ice conditions of the Barents Sea in the second half of XX - early XXI century // The Barents Sea System. — Moscow : Shirshov Institute of Oceanology Publishing House, 2021. — P. 179– 194. — https://doi.org/10.29006/978-5-6045110-0-8/(15). — (In Russian).

9. Freeman E., Woodruff S. D., Worley S. J., et al. ICOADS Release 3.0: a major update to the historical marine climate record // International Journal of Climatology. — 2016. — Vol. 37, no. 5. — P. 2211–2232. — https://doi.org/10.1002/joc.4775.

10. Gavrikov A. V., Krinitsky M. A. and Grigorieva V. G. Modification of Globwave satellite altimetry database for sea wave field diagnostics // Oceanology. — 2016. — Vol. 56, no. 2. — P. 301–306. — https://doi.org/10.1134/s0001437016020065.

11. Good S., Fiedler E., Mao C., et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses // Remote Sensing. — 2020. — Vol. 12, no. 4. — P. 720. — https://doi.org/10.3390/rs12040720.

12. Grigorieva V. G. and Badulin S. I. Wind wave characteristics based on visual Observations and satellite altimetry // Oceanology. — 2016. — Vol. 56, no. 1. — P. 19–24. — https://doi.org/10.1134/s0001437016010045.

13. Gulev S. K. and Grigorieva V. G. Last century changes in ocean wind wave height from global visual wave data // Geophysical Research Letters. — 2004. — Vol. 31, no. 24. — https://doi.org/10.1029/2004gl021040.

14. Gulev S. K., Grigorieva V. G., Sterl A., et al. Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data // Journal of Geophysical Research: Oceans. — 2003. — Vol. 108, no. C7. — P. 3236. — https://doi.org/10.1029/2002jc001437.

15. Hayne G. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering // IEEE Transactions on Antennas and Propagation. — 1980. — Vol. 28, no. 5. — P. 687–692. — https://doi.org/10.1109/tap.1980.1142398.

16. Hydrometeorological conditions of the shelf zone of the seas of the USSR. Vol. 6. Barents Sea. Issue 3. South-eastern part of the sea / ed. by F. S. Terziev. — Leningrad : Gidrometeoizdat, 1985. — 273 p. — (In Russian).

17. Hydrometeorology and hydrochemistry of the seas of the USSR. Vol. 1. Barents Sea. Issue 1. Hydrometeorological conditions / ed. by F. S. Terziev, G. V. Girdyuk, G. G. Zykova, et al. — Leningrad : Gidrometeoizdat, 1990. — 279 p. — (In Russian).

18. Kostianoy A. G., Nihoul J. C. J. and Rodionov V. B. Physical Oceanography of the Frontal Zones in Sub-Arctic Seas. — Amsterdam : Volume 71 (Elsevier Oceanography Series). Elsevier Science, 2004. — P. 326.

19. Kuznetsova M. N. and Vasilyeva A. S. Transport Infrastructure of the Western and Central Arctic Regions of the Russian Federation: Analysis and Prospects // Arctic and North. — 2024. — No. 56. — P. 49–73. — https://doi.org/10.37482/issn2221-2698.2024.56.49.

20. Lebedev S. A. and Gusev I. V. Calibration of significant waves height altimetric measurements by wave reanalysis // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2022. — Vol. 19, no. 6. — P. 248–264. — https://doi.org/10.21046/2070-7401-2022-19-6-248-264.

21. Lebedev S. A., Kostianoy A. G., Ginzburg A. I., et al. Satellite Altimetry Applications in the Barents and White Seas // Coastal Altimetry. — Berlin : Springer Berlin Heidelberg, 2010. — P. 389–415. — https://doi.org/10.1007/978-3-642-12796-0_15.

22. Liu Q., Babanin A. V., Zieger S., et al. Wind and Wave Climate in the Arctic Ocean as Observed by Altimeters // Journal of Climate. — 2016. — Vol. 29, no. 22. — P. 7957–7975. — https://doi.org/10.1175/jcli-d-16-0219.1.

23. Lopatukhin L. I., Bukhanovsky A. V. and Chernysheva E. S. Reference data on the wind and wave regime of the shelf of the Barents and Kara Seas. — Saint Petersburg : Russian Maritime Register of Shipping, 2013. — P. 335. — (In Russian).

24. Lopatukhin L. I., Bukhanovsky A. V., Degtyarev A. B., et al. Reference data of wind and wave climate of the Barents Sea, the Sea of Okhotsk, and the Caspian Sea. — Saint Petersburg : Russian Maritime Register of Shipping, 2003. — P. 316. — (In Russian).

25. López-García P., Gómez-Enri J. and Muñoz-Pérez J. Accuracy assessment of wave data from altimeter near the coast // Ocean Engineering. — 2019. — Vol. 178. — P. 229–232. — https://doi.org/10.1016/j.oceaneng.2019.03.009.

26. Meucci A., Young I. R., Aarnes O. J., et al. Comparison of Wind Speed and Wave Height Trends from Twentieth-Century Models and Satellite Altimeters // Journal of Climate. — 2020. — Vol. 33, no. 2. — P. 611–624. — https://doi.org/10.1175/jcli-d-19-0540.1.

27. Mohamed B., Nilsen F. and Skogseth R. Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea // Remote Sensing. — 2022. — Vol. 14, no. 17. — P. 4413. — https://doi.org/10.3390/rs14174413.

28. Myslenkov S. A., Golubkin P. A. and Zabolotskikh E. V. Evaluation of wave model in the Barents Sea under winter cyclone conditions // Lomonosov Geography Journal. — 2017. — No. 6. — P. 26–32. — (In Russian).

29. Myslenkov S. A., Platonov V. S., Toropov P. A., et al. Simulation of Storm Waves in the Barents Sea // Lomonosov Geography Journal. — 2015. — No. 6. — P. 65–75. — (In Russian).

30. Nesterov E. S. Extreme Waves in the Oceans and Seas. — Moscow, Obninsk : IG-SOTSIN, 2015. — P. 64. — (In Russian).

31. Nesterov E. S. Wind waves in the arctic seas (review) // Hydrometeorological research and forecasting. — 2020. — Vol. 3. — P. 19–41. — https://doi.org/10.37162/2618-9631-2020-3-19-41. — (In Russian).

32. Orimolade A. P. and Gudmestad O. T. On weather limitations for safe marine operations in the Barents Sea // IOP Conference Series: Materials Science and Engineering. — 2017. — Vol. 276. — P. 012018. — https://doi.org/10.1088/1757-899x/276/1/012018.

33. Reistad M., Breivik Ø., Haakenstad H., et al. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea // Journal of Geophysical Research. — 2011. — Vol. 116, no. C5. — https://doi.org/10.1029/2010jc006402.

34. Rodionov V. B. and Kostianoy A. G. Oceanic Fronts of the North-European Basin Seas. — Moscow : GEOS, 1998. — 293 p. — (In Russian).

35. Serykh I. V. and Kostianoy A. G. Seasonal and Interannual Variability of the Barents Sea Temperature // Ecologica Montenegrina. — 2019. — Vol. 25. — P. 1–13. — https://doi.org/10.37828/em.2019.25.1.

36. Sharmar V. D., Tereschenkov V. P., Gavrikov A. V., et al. Moored Meteorological Buoy as Part of National Green-House Monitoring System in the Barents Sea // Oceanology. — 2025. — Vol. 65, no. 1. — P. 161–166. — https://doi.org/10.1134/s0001437024700772.

37. Timmermans B. W., Gommenginger C. P., Dodet G., et al. Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys // Geophysical Research Letters. — 2020. — Vol. 47, no. 9. — https://doi.org/10.1029/2019gl086880.

38. Trofimov A. G. The current trends in oceanographic conditions of the Barents Sea // Trudy VNIRO. — 2021. — Vol. 186, no. 4. — P. 101–118. — https://doi.org/10.36038/2307-3497-2021-186-101-118. — (In Russian).

39. Tsarau A., Guan C. and Shen H. H. Comparison of ice and wind-wave modules in WAVEWATCH III in the Barents Sea // Cold Regions Science and Technology. — 2020. — Vol. 172. — P. 103008. — https://doi.org/10.1016/j.coldregions.2020.103008.


Войти или Создать
* Забыли пароль?