MERCURY'S DEM AND FAG FRACTAL STRUCTURE - INDICATOR FOR METEORITE BOMBARDMENT BY DIFFERENT DENSITY SPACE BODIES
Аннотация и ключевые слова
Аннотация (русский):
Over the past few decades Messenger spacecraft missions have provided to the scientific community a huge amount of new data on the geology and physics of the planet closest to the Sun - Mercury. The collected data became the starting material for the building of the gravity field model of the Mercury - HgM008. Based on it, a very recent NASA scientific team has released a high-quality "free-air" gravity map for the topography of the small planet. This enables new analyzes and interpretations of Mercury's physics and geology. The present study presents the results of Mercury's free-air gravity field (FAG) and digital elevation model (DEM) analysis using the (multi)fractal approach. The obtained results shed new light on the natural processes that have taken place during the geological evolution of Mercury. The results confirmed clear differences between the two hemispheres of the planet. Within the northern hemisphere fractal dimensions of FAG and DEM have variations (R2" role="presentation" style="position: relative;">R2R2R^2) 0.908 and 0.942, while within the southern hemisphere R2" role="presentation" style="position: relative;">R2R2R^2 of FAG and DEM have values 0.975 and 0.857. The results obtained determine the different intensity and density characteristics of space objects colliding with Mercury's two hemispheres, which necessitates additional interpretations.

Ключевые слова:
Mercury, gravity field, fractal, asteroids, DEM, GIS
Список литературы

1. Baldassarri, A., M. Montuori, O. Prieto-Ballesteros, S. C. Manrubia (2008) , Fractal properties of isolines at varying altitude revealing different dominant geological processes on Earth, J. Geophys. Res., 113, p. E09002, https://doi.org/10.1029/2007JE003066.

2. Becker, C. J., et al. (2016) , First Global Digital Elevation Model of Mercury, 47th Lunar and Planetary Science Conference, March 21-25, 2016, LPI Contribution No. 1903, p. 2959, The Woodlands, Texas, USA.

3. Bray, V. J., C. Atwood-Stone, C. D. Neish, et al. (2018) , Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater, Icarus, 301, p. 26-36, https://doi.org/10.1016/j.icarus.2017.10.002.

4. Cao, W., Zh. Cai, Z. Tang (2015) , Fractal structure of lunar topography: An interpretation of topographic characteristics, Geomorphology, 238, p. 112-118, https://doi.org/10.1016/j.geomorph.2015.03.002.

5. Conrad, O., et al. (2015) , System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, p. 1991-2007, https://doi.org/10.5194/gmd-8-1991-2015.

6. Demin, S. A., A. O. Andreev, N. Y. Demina, Y. A. Nefedyev (2017) , The fractal analysis of the gravitational field and topography of the Mars, J. Phys.: Conf. Ser., 929 012002, p. 1-7, https://doi.org/10.1088/1742-6596/929/1/012002.

7. Demin, S. A., A. O. Andreev, N. Y. Demina, Y. A. Nefedyev (2018) , The fractal analysis of the topography and gravitational field of Venus, J. Phys.: Conf. Ser., 1038 012020, p. 1-6, https://doi.org/10.1088/1742-6596/1038/1/012020.

8. Genova, A., et al. (2019) , Geodetic evidence that Mercury has a solid inner core, Geophysical Research Letters, p. 1-30, https://doi.org/10.1029/2018GL081135.

9. Huang, X., X. Jiang, T. Yu, H. Yin (2009) , Fractal-Based Lunar Terrain Surface Modeling for the Soft Landing Navigation, Second International Conference on Intelligent Computation Technology and Automation, p. 53-56, Changsha, Hunan, China, https://doi.org/10.1109/ICICTA.2009.250.

10. Kumar, A. V. S., R. P. R. Sekhar, R. M. Tiwari (2016) , Fractal Analysis of lunar Gravity anomalies over the Basins of Lunar Farside, 19th National Space Science Symposium (NSSS-2016), Kerala, India, p. Poster Session, NSSS, Kerala, India.

11. Mancinelli, P., C. Pauselli, D. Perugini, A. Lupattelli, C. Federico (2014) , Fractal Dimension of Geologically Constrained Crater Populations of Mercury, Pure and Applied Geophysics, 172, no. 7, p. 1999-2008, https://doi.org/10.1007/s00024-014-0906-8.

12. Mark, D. M., P. B. Aronson (1984) , Scale-Dependent fractal dimensions of topographic surfaces: An empirical investigation with applications in geomorphology and computer mapping, Mathematical Geology, 16, no. 7, p. 671-683, https://doi.org/10.1007/BF01033029.

13. Nefedjev, A. Y. (2003) , Lunar Surface Research Using Fractal Analysis, Journal of the Eurasian Astronomical Society, 22, no. 4-5, p. 631-632, https://doi.org/10.1080/1055679031000139460.

14. Pentland, A. P. (1984) , Fractal-based description of natural scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, p. 661-674, https://doi.org/10.1109/TPAMI.1984.4767591.

15. Ranguelov, B., R. Iliev, Tz. Tzankov, E. Spassov (2019) , Fractal analysis of the lunar free-air gravity field, Physics Journal, 2, p. 126-133.

16. Rosenburg, M. A., et al. (2011) , Global surface slopes and roughness of the Moonfrom the Lunar Orbiter Laser Altimeter, Journal of Geophysical Research, 116, https://doi.org/10.1029/2010JE003716.

17. Solomon, S. C., et al. (2001) , The MESSENGER mission to Mercury: Scientific objectives and implementation, Planetary and Space Science, 49, no. 14-15, p. 1445-1465, https://doi.org/10.1016/S0032-0633(01)00085-X.

18. Thiede, R., T. Sutton, H. Düster, M. Sutton (2014) , Quantum GIS Training Manual, 388 pp., Locate Press, Anchorage, USA.

19. Turcotte, D. (1987) , A fractal interpretation of topography and geoid spectra on the Earth, moon, Venus, and Mars, Journal of Geophysical Research, 92, p. 597-601, https://doi.org/10.1029/JB092iB04p0E597.

20. Zhou, G., N. Lam (2005) , A comparison of fractal dimension estimator based on multiple surface generation algorithms, Computers & Geosciences, 31, p. 1260-1269, https://doi.org/10.1016/j.cageo.2005.03.016.

Войти или Создать
* Забыли пароль?