This paper addresses geochemical and petrological aspects of two outcropping kimberlites (5023 and 5119) of the Gooty cluster, emplaced in carbonate sediments of Vempalli Formation of lower Cuddapah basin at Krishtipadu, Anantapur district, Andhra Pradesh, southern India. These pipes were discovered by the Rio Tinto Exploration Group in the recent past. The 5023 kimberlite is enriched in olivine and serpentine while the 5119 pipe possesses haematitised olivine pseudomorphs. The field, textural characteristics and whole rock geochemistry qualify both the pipes for hypabyssal kimberlite breccias of Group-I type similar to world's classical occurrences. The carbon and oxygen stable isotope data, aided with field and petrological studies, indicates existence of possible carbonatite (sovite) phase associated with the 5119 kimberlite. The two kimberlites appear to be originated from a low degree of partial melting ranging from 0.5 to 2.5%. Enrichment of LREE with a high LREE/HREE ratio indicates fractionation at the mantle source region. Whole rock geochemistry supports their diamondiferous nature. Presence of crustal xenoliths post-dates subsequent emplacement of the two pipes to lower Cuddapah sedimentation (2.4 Ga), manifesting kimberlite magmatism. These pipes are the only known Group-I kimberlites from the Proterozoic Cuddapah Basin and therefore warrant detailed investigations.
Kimberlite, carbonatite, archetypal Group-I, Gooty Kimberlite Cluster, lowerCuddapah basin, stable isotope, Palaeoproterozoic
1. Becker, M., A. P. Le Roex (2006) , Geochemistry of South African on and off-craton Group I and II kimberlites: petrogenesis and source region evaluation, Journal of Petrology, 47, p. 67-703, https://doi.org/10.1093/petrology/egi089
2. Bergman, S. C. (1987) , Lamproites and other Potassium rich alkaline rocks; a review of their occurrence, mineralogy and geochemistry, Alkaline Igneous Rocks. Fitton J. G. and Upton B. J. (Eds.), Special Publication No. 30, p. 103-190, Geological Society of London, UK, https://doi.org/10.1144/GSL.SP.1987.030.01.08
3. Birkett, T. C. (2008) , First-row transition elements, Y and Ga in kimberlite and lamproite: applications to diamond prospectivity and petrogenesis, Canadian Mineralogist, 46, p. 1269-1282, https://doi.org/10.3749/canmin.46.5.1269
4. Chakhmouradian, A. R., C. O. Bohm, A. Demeny, et al. (2009) , "Kimberlite" from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite, Lithos, 112S, p. 347-357, https://doi.org/10.1016/j.lithos.2009.03.039
5. Chalapathi Rao, N. V. (2007) , Chelima Dykes, Cuddapah Basin, Southern India: A Review of the Age, Petrology, Geochemistry and Petrogenesis of World's Oldest Lamproites, Journal of Geological Society of India, 69, p. 523-538
6. Chalapathi Rao, N. V. (2008) , Precambrian Alkaline Potassic-Ultrapotassic, Mafic-Ultramafic Magmatism in Peninsular India, Journal of Geological Society of India, 72, p. 57-84
7. Chalapathi Rao, N. V. (2012) , Book Reviews "Diamonds and their Source Rocks in India", Authored by Fareeduddin and R. H. Mitchell. Geological Society of India, 434 p., Current Science, 103, no. 9, p. 1107-1109
8. Chalapathi Rao, N. V., R. K. Srivastava (2009) , Petrology and geochemistry of diamondiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, eastern Dharwar craton, southern India: genesis and constraints on mantle source regions, Contributions to Mineralogy and Petrology, 157, p. 245-265, https://doi.org/10.1007/s00410-008-0332-y
9. Chalapathi Rao, N. V., S. A. Gibson, et al. (2004) , Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India, Journal of Petrology, 45, no. 5, p. 907-948, https://doi.org/10.1093/petrology/egg116
10. Chalapathi Rao, N. V., A. N. Dongre, et al. (2016) , A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication for sub-continental lithospheric mantle evolution and diamond exploration, Gondwana Research, https://doi.org/10.1016/j.gr.2015.06.006
11. Chatterjee, B., S. E. Haggerty, et al. (2008) , Kimberlite-carbonatite relationships revisited: evidence from Khaderpet pipe, Andhra Pradesh, India, 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00070, p. 1-3, University of Alberta, Canada
12. Clarke, L. B., M. J. Le Bas, B. Spiro (1994) , Rare earth, trace element and stable isotope fractionation of carbonatites at Kruidfontein, Transvaal, South Africa, Meyer, H. O. A. and Leonardos, O. H. (eds.), Kimberlites, Related Rocks and Mantle Xenoliths, p. 236-251, Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro
13. Clement, C. R. (1982) , , Ph. D. Thesis, Rodenbosch, South Africa, University of Cape Town
14. Coe, N., A. P. Le Roex, J. J. Gurney, et al. (2008) , Petrogenesis of Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry, Contributions to Mineralogy and Petrology, 156, p. 627-652, https://doi.org/10.1007/s00410-008-0305-1
15. CRAEI, (2004) , , GOMS No. 24-27 Vol. 1 0f 5, from Jan. 2001 to Feb. 2004, CRA Exploration (India) Pvt. Limited (RioTinto Group), India (http://www.ibm.nic.in/)
16. Das Sharma, S., D. S. Ramesh (2013) , Imaging mantle lithosphere for diamond prospecting in southeast India, Lithosphere, 5, no. 4, p. 31-342, https://doi.org/10.1130/L269.1
17. Dasgupta, R., M. M. Hirschman, et al. (2009) , Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle derived melts, Chemical Geology, 262, p. 57-77, https://doi.org/10.1016/j.chemgeo.2009.02.004
18. Dawson, J. B. (1980) , Kimberlites and Their Xenoliths, Springer Verlag, Heidelberg Press, N.Y, https://doi.org/10.1007/978-3-642-67742-7
19. Dawson, J. B., M. S. Garson, B. Roberts (1987) , Altered former alkali carbonatite lava from Oldoinyo Lengai, Tanzania: Inferences for calcite carbonatite lavas, Geology, 15, no. 8, p. 765-768, https://doi.org/10.1130/0091-7613(1987)15%3C765:AFACLF%3E2.0.CO;2
20. Deines, P. (1989) , Stable isotope variations in carbonatites, Carbonatites: Genesis and Evolution, Bell, K. (ed.), p. 301-359, Unwin Hyman, London
21. Dongre, A. N., N. V. Chalapathi Rao, et al. (2016) , Petrology, genesis and geodynamic implication of the Mesoproterozoic-Late Cretaceous Timmasamudram kimberlite cluster, Wajrakarur field, Eastern Dharwar Craton, southern India, Geoscience Frontiers, 8, no. 3, p. 541-553, https://doi.org/10.1016/j.gsf.2016.05.007
22. Kale, V. S. (2016) , Proterozoic Basins of Peninsular India: Status within the Global Proterozoic Systems, Proceedings of the Indian National Science Academy, 82, no. 3, p. 461-477, https://doi.org/10.16943/ptinsa/2016/48461
23. Keller, J., J. Hoefs (1995) , Stable isotope characteristics of recent natrocarbonatite from Oldoinyo Lengai, Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites, Bell, K. and Keller, J. (eds.), p. 113-123, Springer, Berlin, https://doi.org/10.1007/978-3-642-79182-6_9
24. Le Roex, A. P., D. R. Bell, P. Davis (2003) , Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk rock geochemistry, Journal of Petrology, 44, p. 2261-2286, https://doi.org/10.1093/petrology/egg077
25. Mitchell, R. H. (1979) , The alleged kimberlite-carbonatite relationship: additional contrary mineralogical evidence, American Journal of Science, 279, p. 570-589, https://doi.org/10.2475/ajs.279.5.570
26. Mitchell, R. H. (1986) , Kimberlites: Mineralogy, Geochemistry and Petrology, 442 pp., Plenum Press, New York and London
27. Mitchell, R. H. (2005) , Carbonatites and carbonatites and carbonatites, Canadian Mineralogist, 43, p. 2049-2068, https://doi.org/10.2113/gscanmin.43.6.2049
28. Nadeau, O., R. Stevenson, M. Jebrak (2016) , Evolution of Montviel alkaline-carbonatite complex by coupled fractional crystallisation, fluid mixing and metasomatism, Part II: Trace element and Sm-Nd isotope geochemistry of metasomatic rocks; Implications for REE Nb mineralisation, Ore Geology Reviews, 72, p. 1163-1173, https://doi.org/10.1016/j.oregeorev.2015.09.021
29. Nagaraja Rao, B. K., S. T. Rajurkar, et al. (1987) , Stratigraphy, structure and evolution of the Cuddapah Basin, Geological Society of India Memoir, 6, p. 33-86
30. Phani, P. R. C. (2015) , Area selection for Diamond Exploration based on Geological and Morphostructural setup: Examples from Wajarakarur Kimberlite Field, India, Journal of Advanced Chemical Sciences, 1, p. 102-106
31. Phani, P. R. C., V. V. N. Raju (2017) , A New Kimberlite pipe in Balkamthota Vanka, Pennahobilam, Anantapur district, Andhra Pradesh, India. Field aspects and Preliminary investigations, Periodico di Mineralogia, 86, no. 3, p. 213-228, https://doi.org/10.2451/2017PM689
32. Phani, P. R. C., P. Sengupta, S. Basu (2020) , Data on geochemistry and petrology of two kimberlites at Krishtipadu, Andhra Pradesh, Southern India, Earth Science DataBase, GC RAS, Moscow, https://doi.org/10.2205/RJES-data-666
33. Plyusnin, G. S., V. S. Samoylov, S. I. Gol'shev (1980) , The δ13δ13C, δ18δ18O isotope pair method and temperature facies of carbonatites, Doklady Akademi Nank USSR. Seriya Geologiya, 254, p. 1241-1245
34. Prelevi, D., S. F. Foley, et al. (2008) , Mediterranean tertiary lamproites derived from multiple source components in post collisional geodynamics, Geochimica et Cosmochimica Acta, 72, p. 2125-2156, https://doi.org/10.1016/j.gca.2008.01.029
35. Radhakrishna, B. P. (2007) , Diamond exploration in India: Retrospect and prospect, Journal of Geological Society of India, 69, p. 419-442
36. Ravi, S., K. S. Bhaskara Rao, R. Ananda Reddy (2018) , Diamond Fields of India, Bulletin Series A, Geological Survey of India, 68, p. 1033
37. Saha, D., V. Tripathy (2012) , Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: A review, Palaeoproterozoic of India, Mazumdar, R. and Saha, D. (eds.), Special Publication, 365, p. 161-184, Geological Society of India, India, https://doi.org/10.1144/SP365.9
38. Satyanarayanan, M., D. V. S. Rao, et al. (2017) , Petrogenesis of carbonatitic lamproitic dykes from Sidhi gneissic complex, Central India, Geoscience Frontiers, p. 1-27, https://doi.org/10.1016/j.gsf.2017.04.011
39. Shaikh, A. M., S. C. Patel, et al. (2016) , Mineralogy of the TK1 and TK4 "kimberlites" in the Timmasamudram cluster, Wajrakarur Kimberlite Field, India: Implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres, Chemical Geology, https://doi.org/10.1016/j.chemgeo.2016.10.030
40. Smith, C. B., H. L. Allsopp, et al. (1985) , Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb-Sr method on phlogopite and whole-rock samples, Transactions of Geological Society of South Africa, 88, p. 249-266
41. Smith, C. B., S. E. Haggerty, et al. (2013) , Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion, Lithos, 182-183, p. 102-113, https://doi.org/10.1016/j.lithos.2013.10.006
42. Sun, S.-s., W. F. McDonough (1989) , Chemical and Isotopic systematics of oceanic basalts: implications for mantle compositions and processes, Magmatism in the Oceanic Basins, Saunders A. D. and Norry M. J. (eds.), Special Publication, 42, p. 313-345, Geological Society, India, https://doi.org/10.1144/GSL.SP.1989.042.01.19
43. Tappe, S., S. F. Foley, G. A. Jenner, et al. (2006) , Genesis of ultramafic lamprophyres and carbonatites at Ailik Bay, Labrador, a Cosequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton, Journal of Petrology, 476, no. 7, p. 1261-1315, https://doi.org/10.1093/petrology/egl008
44. Tappe, S., S. F. Foley, et al. (2008) , Between carbonatite and lamproite- diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes, Geochemica et Cosmochimica Acta, 72, p. 3258-3286, https://doi.org/10.1016/j.gca.2008.03.008
45. Tappe, S., A. Steenfelt, et al. (2009) , The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships, Lithos, 112S, p. 385-399, https://doi.org/10.1016/j.lithos.2009.03.002
46. Tappe, S., G. D. Pearson, G. Nowell, et al. (2011) , A fresh look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal, Earth and Planetary Science Letters, 305, p. 235-248, https://doi.org/10.1016/j.epsl.2011.03.005
47. Tappe, S., G. D. Pearson, D. Prelevic (2013) , Kimberlite, carbonatite, and potassic magmatism as part of the geochemical cycle, Chemical Geology, https://doi.org/10.1016/j.chemgeo.2013.04.004
48. Taylor, H. P., J. Frechen, E. T. Degens (1967) , Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden, Geochimica et Cosmochimica Acta, 31, p. 407-430, https://doi.org/10.1016/0016-7037(67)90051-8
49. Taylor, W. R., L. A. Tomkins, S. E. Haggerty (1994) , Comparitive geochemistry of West African kimberlites: Evidence for a micaceous kimberlite end member of sub-lithospheric origin, Geochemica et. Cosmochemica Acta, 58, p. 4017-4037, https://doi.org/10.1016/0016-7037(94)90264-X
50. Williams-Jones, A. E., J. Hartzler, et al. (2004) , A geochemical approach to the classification of kimberlitic rocks Divex Rapport Final, Sous-project SC8a, 8 pp., MgGill University, Montréal