STERIC SEA-LEVEL FLUCTUATIONS FROM REMOTE SENSING, OCEANIC REANALYSES AND OBJECTIVE ANALYSES IN THE NORTH ATLANTIC
Аннотация и ключевые слова
Аннотация (русский):
Five data sets were used to estimate steric level fluctuations in the North Atlantic for 2003-2015. We compare estimates made by a combination of altimetry and GRACE gravity data (ALT-GRV) with assessments obtained from vertical density profiles derived from SODA reanalysis, ARMOR, and EN4 objective analyses. We analyze the datasets without linear trends, and the seasonal signals are also removed. The resulting signals demonstrate the steric sea-level anomalies not related to the linear trends and the seasonal cycles and can be connected with short-period intra-annual variability as well as vortex dynamics of the region since mesoscale eddies can transfer heat and salt and influence thereby the thermohaline water structure from the sea surface to the depth. The deep convection, as well as meandering of the currents also influences the variability of residual time series. The steric sea-level fluctuations, obtained from the ARMOR dataset, which incorporates results of satellite observations, shows the best fit for those, derived from ALT-GRV data. The correlation coefficient between ARMOR and ALT-GRV varies between 0.6 and 0.8 over the study region (0.7 on average). Steric sea-level variations derived from SODA or EN4 show good matches with ALT-GRV only for the steric sea-level fluctuations spatially averaged over central regions of the North Atlantic. The discrepancies between the data sets increase northwards and towards the coast. Of the considered data sets, ARMOR is the most suitable for climate studies and research of the sea-level change effects; however, it should be used with caution in the study of the spatial distribution of the steric level.

Ключевые слова:
Sea-level, remote sensing, North Atlantic
Список литературы

1. Antonov, J. I., S. Levitus, T. P. Boyer (2002) , Steric sea-level variations during 1957-1994: Importance of salinity, J. Geophys. Res., 107, no. C12, p. 8013, https://doi.org/10.1029/2001JC000964

2. Bashmachnikov, I. L., A. M. Fedorov, A. V. Vesman, et al. (2018) , Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: Localization of the deep convection sites, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 15, no. 7, p. 184-194, https://doi.org/10.21046/2070-7401-2018-15-7-184-194 (in Russian)

3. Bashmachnikov, I. L., A. M. Fedorov, A. V. Vesman (2019) , Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: Indices of intensity of deep convection, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 16, no. 1, p. 191-201, https://doi.org/10.21046/2070-7401-2019-16-1-191-201 (in Russian)

4. Belonenko, T. V., A. V. Koldunov (2019) , Trends of Steric Sea-level Oscillations in the North Atlantic, Izvestiya, Atmospheric and Oceanic Physics, 55, no. 9, p. 1106-1113, https://doi.org/10.1134/S0001433819090081

5. Belonenko, T. V., A. M. Fedorov (2018) , Steric Level Fluctuations and Deep Convection in the Labrador and Irminger Seas, Izvestiya, Atmospheric and Oceanic Physics, 54, no. 9, p. 1039-1049, https://doi.org/10.1134/S0001433818090086

6. Belonenko, T. V., A. M. Fedorov, I. L. Bashmachnikov, et al. (2018) , Current Intensity Trends in the Labrador and Irminger Seas Based on Satellite Altimetry Data, Izvestiya, Atmospheric and Oceanic Physics, 54, no. 9, p. 1031-1038, https://doi.org/10.1134/S0001433818090074

7. Bersch, M. (2002) , North Atlantic Oscillation - induced changes of the upper layer circulation in the northern North Atlantic Ocean, J. Geophys. Res., 107, no. C10, p. 3156, https://doi.org/10.1029/2001JC000901

8. Carton, J. A., G. Chepurin, X. Cao, et al. (2000) , A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology, J. Phys. Oceanogr., 30, p. 294-309, https://doi.org/10.1175/1520-0485(2000)030%3C0294:ASODAA%3E2.0.CO;2

9. Carton, J. A., B. S. Giese (2008) , A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA), Monthly Weather Review, 136, no. 8, p. 2999, https://doi.org/10.1175/2007MWR1978.1

10. Chambers, D. P. (2006) , Observing seasonal steric sea-level variations with GRACE and satellite altimetry, J. Geophys. Res., 111, p. C03010, https://doi.org/10.1029/2005JC002914

11. Chambers, D. P., J. A. Bonin (2012) , Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 8, p. 859-868, https://doi.org/10.5194/os-8-859-2012

12. Church, J. A., N. J. White (2011) , Sea-level rise from the late 19th to the early 21st century, Surveys in Geophysics, 32, no. 4-5, p. 585-602, https://doi.org/10.1007/s10712-011-9119-1

13. Curry, R. G., C. Mauritzen (2005) , Dilution of the northern North Atlantic Ocean in recent decades, Science, 308, p. 1772-1774, https://doi.org/10.1126/science.1109477

14. Dee, D. P., et al. (2011) , The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, John Wiley & Sons, Ltd., 137, p. 553-597

15. Dickson, R. R., J. Lazier, J. Meincke, et al. (1996) , Long-term coordinated changes in the convective activity of the North Atlantic, Prog. Oceanogr., 38, p. 241-295, https://doi.org/10.1016/S0079-6611(97)00002-5

16. Dickson, R., I. Yashayev, J. Meincke, et al. (2002) , Rapid freshening of the deep North Atlantic Ocean over the past four decades, Nature, 416, p. 832-837, https://doi.org/10.1038/416832a

17. Fedorov, A. M., I. L. Bashmachnikov, T. V. Belonenko (2019) , Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling, Vestn S. Petersbur. Un-ta, Earth sciences, 64, no. 3, p. 491-511, https://doi.org/10.21638/spbu07.2019.308 (in Russian)

18. Frederikse, T., R. E. M. Riva, M. A. King (2017) , Ocean bottom deformation due to present-day mass redistribution and its impact on sea-level observations, Geoph. Res. Lett., 44, https://doi.org/10.1002/2017GL075419

19. Fu, L.-L., P.-Y. Le Traon (2006) , Satellite altimetry and ocean dynamics, Comptes Rendus Geosciences, 338, no. 14-15, p. 1063-1076, https://doi.org/10.1016/j.crte.2006.05.015

20. Fu, L.-L, D. H. Roemmich (2018) , Monitoring global sea-level change from spaceborne and in situ observing systems, Bridge, 48, p. 54-63

21. García, D., G. Ramillien, A. Lombard (2007) , Cazenave Steric Sea-level Variations Inferred from Combined Topex/Poseidon Altimetry and GRACE Gravimetry, Pure & Applied Geophysics, 164, no. 4, p. 721-731, https://doi.org/10.1007/s00024-007-0182-y

22. Good, S. A., M. J. Martin, N. A. Rayner (2013) , EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, Journ. of Geoph. Res.: Oceans, 118, p. 6704-6716, https://doi.org/10.1002/2013JC009067

23. Grinsted, A., J. C. Moore, S. Jevrejeva (2004) , Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Process. Geophys., 11, p. 561-566, https://doi.org/10.5194/npg-11-561-2004

24. Guinehut, S., A.-L. Dhomps, et al. (2012) , High resolution 3D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, p. 845-857, https://doi.org/10.5194/os-8-845-2012

25. Hakkinen, S., P. B. Rhines (2004) , Decline of subpolar North Atlantic circulation during the 1990s, Science, 309, p. 555-559, https://doi.org/10.1126/science.1094917

26. Hakkinen, S., P. B. Rhines (2009) , Shifting surface currents of the northern North Atlantic Ocean, J. Geophys. Res.: Oceans, 114, p. C04005, https://doi.org/10.1029/2008JC004883

27. Han, G., N. Chen, C. Y. Kuo, et al. (2016) , Interannual and Decadal Sea Surface Height Variability Over the Northwest Atlantic Slope, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, https://doi.org/10.1109/JSTARS.2016.2584778

28. Hartmann, D. L., A. M. G. Klein Tank, M. Rusticucci, et al. (2013) , Observations: Atmosphere and Surface, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)), p. 159-254, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA

29. Ishii, M., M. Kimoto (2009) , Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections, J. Oceanogr., 65, p. 287-299, https://doi.org/10.1007/s10872-009-0027-7

30. Ishii, M., M. Kimoto, K. Sakamoto (2006) , Steric sea-level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Ocean., 62, p. 155-170, https://doi.org/10.1007/s10872-006-0041-y

31. Khairullina, G. R., N. M. Astafieva (2011) , Quasi-Beinnial Oscillation in the Earth's Atmophere, Review: Observations and Physical Mechanisms, 60 pp., IKI RAS, Moscow (in Russian)

32. Koldunov, N. V., N. Serra, A. Kohl (2014) , Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009, Journ. of Geoph. Res.: Oceans, 119, no. 12, p. 8936-8954, https://doi.org/10.1002/2014JC010170

33. Kuo, C. (2006) , Determination and Characterization of 20th Century Global Sea Level Rise, Report 478, Ohio State University, Division of Geodetic Science, Columbus, OH, USA

34. Kuo, C.-Y., C. K. Shum, J. Guo, et al. (2008) , Southern Ocean mass variation studies using GRACE and satellite altimetry, Earth, Planets and Space, 60, no. 5, p. 477-485, https://doi.org/10.1186/BF03352814

35. Lee, T., S. Hakkinen, K. Kelly, et al. (2010) , Satellite observations of ocean circulation changes associated with climate variability, Oceanography, 23, no. 4, p. 70-81, https://doi.org/10.5670/oceanog.2010.06

36. Levitus, S., J. I. Antonov, et al. (2005) , Linear trends of zonally averaged thermosteric, halosteric, and total steric sea-level for individual ocean basins and the World Ocean, (1955-1959)-(1994-1998), Geophys. Res. Lett., 32, p. L16601, https://doi.org/10.1029/2005GL023761

37. Lombard, A., D. Garcia, G. Ramillien, et al. (2007) , Estimation of steric sea-level variations from combined GRACE and Jason-1 data, Earth Planet Sci Lett., 254, p. 194-202, https://doi.org/10.1016/j.epsl.2006.11.035

38. Maze, G. (2019), Taylor Diagram, MATLAB Central File Exchange. (, Retrieved December 17)

39. Ray, R. D., S. B. Luthcke, T. van Dam (2013) , Monthly crustal loading corrections for satellite altimetry, Journ. of Atmospheric and Oceanic Technology, 30, no. 5, p. 999-1005, https://doi.org/10.1175/JTECH-D-12-00152.1

40. Rhein, M., S. R. Rintoul, S. Aoki, et al. (2013) , Observations: Ocean, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T. F., et al. (eds.), p. 255-315, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA

41. Storto, A., S. Masina, M. Balmaseda (2017) , Steric sea-level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses, Climate Dynamics, 49, no. 3, p. 709-729, https://doi.org/10.1007/s00382-015-2554-9

42. Taylor, K. (2001) , Summarizing multiple aspects of model performance in a single diagram, Journ. of Geoph. Res.-Atmospheres, V106, no. D7, p. 7183-7192, https://doi.org/10.1029/2000JD900719

43. UNESCO, (1981) , Tenth report of the joint panel in ocean graphic tables and standards, UNESCO Technical Papers in Marine Science, 36, p. 25, UNESCO, Paris

44. Verbrugge, N., S. Mulet, S. Guinehut (2017) , ARMOR3D: A 3D multi-observations T, S, U, V product of the ocean, Geophys. Res. Abstracts, 19, p. EGU2017-17579

45. Volkov, D. L., F. W. Landerer, S. A. Kirillov (2013) , The genesis of sea-level variability in the Barents Sea, Continental Shelf Res., 66, p. 92-104, https://doi.org/10.1016/j.csr.2013.07.007

46. Wadhams, P., W. Munk (2004) , Ocean freshening, sea-level rising, sea ice melting, Geophys. Res. Lett., 31, p. L11311, https://doi.org/10.1029/2004GL020039

Войти или Создать
* Забыли пароль?