COMPARATIVE ANALYSIS OF THE FIRST BAROCLINIC ROSSBY RADIUS IN THE BALTIC, BLACK, OKHOTSK, AND MEDITERRANEAN SEAS
Аннотация и ключевые слова
Аннотация (русский):
Variability of the first baroclinic Rossby radius of deformation, LR" role="presentation">LR

Ключевые слова:
Vertical eigenvalue problem, seawater density stratification, long linear internal wave phase speed, first baroclinic Rossby radius of deformation, seasonal variability
Список литературы

1. Alenius, P., A. Nekrasov, K. Myrberg (2003) , Variability of the baroclinic Rossby radius in the Gulf of Finland, Continental Shelf Research, 23, no. 6, p. 563-573, https://doi.org/10.1016/S0278-4343(03)00004-9

2. Boegman, L., M. Stastna (2019) , Sediment resuspension and transport by internal solitary waves, Annual Review of Fluid Mechanics, 51, p. 129-154, https://doi.org/10.1146/annurev-fluid-122316-045049

3. Bulatov, V. V., Yu. V. Vladimirov (2018) , Unsteady regimes of internal gravity wave generation in the ocean, Russ. J. Earth Sci., 18, no. 2, p. ES2004, https://doi.org/10.2205/2018ES000619

4. Bulatov, V. V., Y. V. Vladimirov, I. Y. Vladimirov (2019) , Far fields of internal gravity waves from a source moving in the ocean with an arbitrary buoyancy frequency distribution, Russ. J. Earth Sci., 19, p. ES5003, https://doi.org/10.2205/2019ES000667

5. Cai, Sh., X. Long, Z. Gan (2002) , A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait, Oceanologica Acta, 25, p. 51-60, https://doi.org/10.1016/S0399-1784(02)01181-7

6. Cai, S., X. Long, R. Wu, et al. (2008) , Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea, Journal of Marine Systems, 74, no. 1-2, p. 711-720, https://doi.org/10.1016/j.jmarsys.2007.12.008

7. Carnes, M. R. (2009) , Description and evaluation of GDEM-V3.0, NRL Rep. NRL/MR/7330-09-9165, Nav. Res. Lab., Washington, D. C

8. Chelton, D. B., R. A. deSzoeke, M. G. Schlax, et al. (1998) , Geographical Variability of the First Baroclinic Rossby Radius of Deformation, J. Phys. Oceanogr., 28, p. 433-460, https://doi.org/10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

9. Ding, W., C. Ai, S. Jin, et al. (2020) , 3D Numerical Investigation of Forces and Flow Field around the Semi-Submersible Platform in An Internal Solitary Wave, Water, 12, no. 1, p. 208, https://doi.org/10.3390/w12010208

10. Emery, W. J., W. G. Lee, L. Magaard (1984) , Geographical and seasonal distribution of Brunt-Vaisala frequency and Rossby radii in the North Pacific and North Atlantic, J. Phys. Oceanogr., 14, p. 294-317

11. Frey, D. I., A. N. Novigatsky, M. D. Kravchishina, et al. (2017) , Water structure and currents in the Bear Island Trough in July-August 2017, Russ. J. Earth. Sci., 17, p. ES3003, https://doi.org/10.2205/2017ES000602

12. Frey, D. I., E. G. Morozov, I. Ansorge, et al. (2019) , Thermohaline structure of Antarctic Bottom Water in the abyssal basins of the South Atlantic, Russ. J. Earth Sci., 19, p. ES5005, https://doi.org/10.2205/2019ES000679

13. Holloway, P., E. Pelinovsky, T. Talipova (1999) , A Generalized Korteweg-de Vries Model of Internal Tide Transformation in the Coastal Zone, J. Geophys. Res., 104, no. C8, p. 18333-18350, https://doi.org/10.1029/1999JC900144

14. Houry, S., E. Dombrovsky, P. DeMey, et al. (1987) , Brunt-Väisälä frequency and Rossby radii in the South Atlantic, J. Phys. Oceanogr., 17, p. 1619-1626, https://doi.org/10.1175/1520-0485(1987)017%3C1619:BVFARR%3E2.0.CO;2

15. Grimshaw, R., E. Pelinovsky, T. Talipova, et al. (2004) , Simulation of the transformation of internal solitary waves on oceanic shelves, J. Phys. Oceanogr., 34, p. 2774-2791, https://doi.org/10.1175/JPO2652.1

16. Kurkin, A., O. Kurkina, T. Talipova, et al. (2015) , Internal waves in the Mediterranean Sea: mapping and transformations, E. Ozhan (ed.), Proceedings of the Twelfth International Conference on the Mediterranean Coastal Environment, MEDCOAST 15, 06-10 October 2015, Varna, Bulgaria, vol. 2, p. 835-846, MEDCOAST Mediterranean Coastal Foundation, Dalyan, Mugla, Turkey

17. Kurkina, O., E. Pelinovsky, et al. (2011) , Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water, J. Coast. Res., no. SI 64, p. 2042-2047

18. Kurkina, O., E. Rouvinskaya, et al. (2017a) , Propagation regimes and populations of internal waves in the Mediterranean Sea basin, Estuarine, Coastal and Shelf Science, 185, p. 44-54, https://doi.org/10.1016/j.ecss.2016.12.003

19. Kurkina, O., T. Talipova, et al. (2017b) , The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk, Estonian Journal of Earth Sciences, 66, no. 4, p. 238-255, https://doi.org/10.3176/earth.2017.20

20. Lamb, K. G., A. Warn-Varnas (2015) , Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea, Nonlin. Processes Geophys., 22, p. 289-312, https://doi.org/10.5194/npg-22-289-2015

21. Lin, Q., X. G. Du, J. Kuang, et al. (2019) , Forces and moments exerted by incident internal waves on a plate-cylinder structure in a two-layer fluid, Meccanica, 54, no. 10, p. 1545-1560, https://doi.org/10.1007/s11012-019-01032-0

22. Marchenko, A. V., E. G. Morozov (2016) , Surface manifestations of the waves in the ocean covered with ice, Russ. J. Earth Sci., 16, no. 1, p. ES1001, https://doi.org/10.2205/2016ES000561

23. Matsui, R., M. Kido, Y. Niwa, et al. (2019) , Effects of disturbance of seawater excited by internal wave on GNSS-acoustic positioning, Marine Geophysical Research, 40, no. 4, p. 541-555, https://doi.org/10.1007/s11001-019-09394-6

24. Miropolsky, Yu. Z. (2001) , Dynamics of internal gravity waves in the ocean, 321 pp., Springer, Dordrecht, https://doi.org/10.1007/978-94-017-1325-2

25. Morozov, E. G. (2018) , Oceanic internal tides. Observations, analysis and modeling, 304 pp., Springer, Cham, https://doi.org/10.1007/978-3-319-73159-9

26. Morozov, E. G., R. Yu. Tarakanov, D. I. Frey, et al. (2018) , Currents and water structure north of the Vema Channel, Russ. J. Earth Sci., 18, p. ES5006, https://doi.org/10.2205/2018ES000630

27. Morozov, E. G., D. I. Frey, N. A. Diansky, et al. (2019) , Bottom circulation in the Norwegian Sea, Russ. J. Earth Sci., 19, p. ES2004, https://doi.org/10.2205/2019ES000655

28. Nurser, A. J. G., S. Bacon (2014) , The Rossby radius in the Arctic Ocean, Ocean Science, 10, no. 6, p. 967-975, https://doi.org/10.5194/os-10-967-2014

29. Osinski, R., D. Rak, W. Walczowski, et al. (2010) , Baroclinic Rossby radius of deformation in the southern Baltic Sea, Oceanologia, 52, no. 3, p. 417-429, https://doi.org/10.5697/oc.52-3.417

30. Pollmann, F. (2020) , Global characterization of the ocean's internal wave spectrum, Journal of Physical Oceanography, 50, no. 7, p. 1871-1891, https://doi.org/10.1175/JPO-D-19-0185.1

31. Saenko, O. A. (2006) , Influence of Global Warming on Baroclinic Rossby Radius in the Ocean: A Model Intercomparison, Journal of Climate, 19, no. 7, p. 1354-1360, https://doi.org/10.1175/JCLI3683.1

32. Stastna, M., K. Lamb (2002) , Large fully nonlinear internal solitary waves: The effect of background current, Physics of Fluids, 14, no. 9, p. 2987-2999, https://doi.org/10.1063/1.1496510

33. Stepanov, D. V. (2017) , Estimating the baroclinic Rossby radius of deformation in the Sea of Okhotsk, Russian Meteorology and Hydrology, 42, no. 9, p. 601-606, https://doi.org/10.3103/S1068373917090072

34. Sueyoshi, M., T. Yasuda (2009) , Reproducibility and Future Projection of the Ocean First Baroclinic Rossby Radius Based on the CMIP3 Multi-Model Dataset, Journal of the Meteorological Society of Japan. Ser. II, 87, no. 4, p. 821-827, https://doi.org/10.2151/jmsj.87.821

35. Talipova, T., N. Polukhin (2001) , Averaged characteristics of the internal wave propagation parameters in the World Ocean, Izvestia of Russian Academy of Engineering Sciences, Series: Applied Mathematics and Informatics, 2, p. 139-155 (in Russian)

36. Talipova, T., O. Kurkina, A. Kurkin, et al. (2020) , Internal Wave Breathers in the Slightly Stratified Fluid, Microgravity Science and Technology, 32, p. 69-77, https://doi.org/10.1007/s12217-019-09738-2

37. Vlasenko, V., N. Stashchuk (2015) , Internal tides near the Celtic Sea shelf break: A new look at a well known problem, Deep-Sea Res. I, 103, p. 24-36, https://doi.org/10.1016/j.dsr.2015.05.003

Войти или Создать
* Забыли пароль?