ALGORITHM FOR SELECTING SYSTEMS HORIZONTAL WELLS AND MATHEMATICAL MODELS FOR UNCONVENTIONAL RESERVOIRS
Аннотация и ключевые слова
Аннотация (русский):
When designing the development of hydrocarbon fields for efficient production, it is necessary to correctly position horizontal wells. Specific solutions are required for optimal placement of horizontal well systems. An algorithm is proposed to select the optimal development option for systems with horizontal wells. Mathematical models of non-traditional collectors are presented. The proposed block diagram of the algorithm of actions will make it possible to choose the best option for developing a field with systems of horizontal wells. A complex model allows one to obtain true (or real) initial data for their subsequent processing in the modeling process and to obtain results that are as close to reality as possible.

Ключевые слова:
Horizontal well, tight gas, unconventional oil, reservoir characterization, fractured reservoir, reservoir simulation, oil and gas reserve
Список литературы

1. Abou-Kassem, J. H., S. M. Farouq-Ali, M. R. Islam (2006) , Petroleum Reservoir Simulations: A Basic Approach, 445 pp., Gulf Publications Co., Houston, Texas

2. Aguilera, R., M. S. Aguilera (2003) , Improved Models for Petrophysical Analysis of Dual Porosity Reservoirs, Petrophysics, 44, no. 1, p. 21-35

3. Baker, W. J. (1955) , Flow in Fissured Reservoir, Thesis, 4th World Petroleum Congress, Rome, Italy

4. Cortis, A., J. Birkholzer (2008) , Continuous Time Random Walk Analysis of Solute Transport in Fractured Porous Media, Water Resources Research, 44, https://doi.org/10.1029/2007WR006596

5. DeSwaan, H. (1975) , Analytical Solution for the Determination of Naturally Fractured Reservoir Parameters by Well Testing, Thesis, SPE Western Regional Meeting, Ventura, California

6. Gupta, A., et al. (2001) , Crystal structure of Rv2118c: an AdoMet-Dependent Methyltransferase from Mycobacterium Tuberculosis H37Rv, Journal of Molecular Biology, 312, no. 2, p. 381-91, https://doi.org/10.1006/jmbi.2001.4935

7. Henn, N., B. Bourbiaux, M. Quintard, et al. (1999) , Modelling Conductive Faults With a Multiscale Approach Involving Segregation Concept, 10th European Symposium on Improved Oil Recovery, https://doi.org/10.3997/2214-4609.201406362

8. Islam, M. R., S. H. Hossain, S. H. Moussavizadegan, et al. (2016) , Advanced Petroleum Reservoir Simulation: Towards Developing Reservoir Emulators, 592 pp., Scrivener Publishing LLC, https://doi.org/10.1002/9781119038573

9. Islam, M. R., M. E. Hossain, A. O. Islam (2017) , Hydrocarbons in Basement Formations, 642 pp., Scrivener Publishing LLC, Salem, Massachusetts, https://doi.org/10.1002/9781119294498

10. Islam, M. R., J. S. Islam, et al. (2016a) , The Greening of Pharmaceutical Engineering, 482 pp., Scrivener Publishing LLC, https://doi.org/10.1002/9781119159704

11. Kazemi, H. (1969) , Pressure Transient Analysis of Naturally Fractured Reservoir With Uniform Fracture, Society of Petroleum Engineers Journal, 9, no. 4, https://doi.org/10.2118/2156-A

12. Landereau, P., B. Noetinger, M. Quintard (2001) , Quasi-Steady Two-Equation Models for Diffusive Transport in Fractured Porous Media: Large-Scale Properties for Densely Fractured Systems, Advances in Water Resources, 24, no. 8, p. 863-876

13. Metzler, R., W. G. Glöckle, T. F. Nonnenmacher (1994) , Fractional Model Equation for Anomalous Diffusion, Physica A: Statistical Mechanics and its Applications, 211, no. 1, p. 13-24, https://doi.org/10.1016/0378-4371(94)90064-7

14. Nie, R., Y. Meng, Y. Jia, et al. (2012) , Dual Porosity and Dual Permeability Modeling of Horizontal Well in Naturally Fractured Reservoir, Transport in Porous Media, 92, p. 213-235, https://doi.org/10.1007/s11242-011-9898-3

15. Noetinger, B., T. Estebenet (2000) , Up-Scaling of Double Porosity Fractured Media Using Continuous-Time Random Walks Methods, Transport in Porous Media, 39, p. 315-337, https://doi.org/10.1023/A:1006639025910

16. Park, C. C. (2001) , The Environment: Principles and Applications, 660 pp., Routledge, London, UK

17. Park, H., J. Choe, J. Kang (2000) , Pressure Behavior of Transport in Fractal Porous Media Using a Fractional Calculus Approach, Energy Sources, 22, no. 10, p. 881-890, https://doi.org/10.1080/00908310051128237

18. Raghavan, R. (2011) , Fractional Derivatives: Application to Transient Flow, Journal of Petroleum Science and Engineering, 80, no. 1, p. 7-13, https://doi.org/10.1016/j.petrol.2011.10.003

19. Reiss, L. H. (1980) , The Reservoir Engineering Aspects of Fractured Formations, 108 pp., Editions TECHNIP, Paris, France

20. Rose, W. (2000) , Myths About Later-Day Extensions of Darcy's Law, Journal of Petroleum Science and Engineering, 26, no. 1-4, p. 187-198, https://doi.org/10.1016/S0920-4105(00)00033-4

21. Teimoori, A., Z. Chen, S. S. Rahman, T. Tran (2005) , Effective Permeability Calculation Using Boundary Element Method in Naturally Fractured Reservoirs, Petroleum Science and Technology, 23, no. 5-6, p. 693-700, https://doi.org/10.1081/LFT-200033029

22. Warren, J. E., P. J. Root (1963) , The Behavior of Naturally Fractured Reservoir, Society of Petroleum Engineers Journal, 3, no. 3, p. 245-255, https://doi.org/10.2118/426-PA

23. Yarakhanova, D. G. (2015) , The Feasibility of Drilling Horizontal Wells, Thesis, EAGE, Moscow, Russia

24. Yarakhanova, D. G., et al. (2019) , Horizontal Wells and Multistage Hydraulic Fracturing, Drilling and Oil, no. 10, p. 27-28

Войти или Создать
* Забыли пароль?