USING THE GIANT GAUSSIAN PROCESS MODEL FROM PALEODIRECTIONAL AND PALEOINTENSITY DATA TO INVESTIGATE PALEOMAGNETIC SECULAR VARIATION
Аннотация и ключевые слова
Аннотация (русский):
The description of the behavior of the geomagnetic field in the geological past is greatly hampered by the paucity of the data both in space and time. In paleomagnetic studies, this circumstance is partly overcome through the use of the Geomagnetic Axial Dipole (GAD) model, which however becomes unsatisfactory when multipolar terms with non-zero time averages are introduced. Under these conditions, the only way to describe the spatio-temporal evolution of the paleofield is to investigate the temporal evolution of its statistical characteristics. An applicable method for such a description is the use of the Giant Gaussian Process model which does not determine the individual parameters but the probabilistic compatibility of a given model with empirical data. However, the specificity of the data entails many technical difficulties for the implementation of this method when applied to paleomagnetic and paleointensity data. An example of such an analysis applied to the Brunhes epoch clearly revealed the necessity of introducing the significant non-dipole terms in the ancient geomagnetic field configuration for this epoch. In addition, the problem of the discrepancy between models constructed separately for paleointensity and paleoinclination data was discovered. Hypotheses are to explain this discrepancy.

Ключевые слова:
Main magnetic field of the Earth, paleointensity, paleomagnetic secular variations, paleodirectional data, geomagnetic axial dipole model, Giant Gaussian Process
Список литературы

1. Backus, G. E. (1968) , Application of a non-linear boundary-value problem for Laplace's equation to gravity and geomagnetic intensity surveys, The Quarterly Journal of Mechanics and Applied Mathematics, 21, no. 2, p. 195-221, https://doi.org/10.1093/qjmam/21.2.195

2. Backus, G. E. (1970) , Non-uniqueness of the external geomagnetic field determined by surface intensity measurements, Journal of Geophysical Research, 75, no. 31, p. 6339-6341, https://doi.org/10.1029/ja075i031p06339

3. Barndorff-Nielsen, O. (1979) , Models for non-Gaussian variation, with applications to turbulence, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 368, no. 1735, p. 501-520, https://doi.org/10.1098/rspa.1979.0144

4. Bingham, C. (1983) , A series expansion for angular gaussian distribution, Statistics on Spheres, Watson G. S. (Ed.), p. 226-231, Wiley, US

5. Bloxham, J. (1987) , Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem, Journal of Geophysical Research: Solid Earth, 92, no. B11, p. 11,597-11,608, https://doi.org/10.1029/jb092ib11p11597

6. Bloxham, J., D. Gubbins, A. Jackson (1989) , Geomagnetic secular variation, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 329, no. 1606, p. 415-502, https://doi.org/10.1098/rsta.1989.0087

7. Bouligand, C., N. Gillet, et al. (2016) , Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations, Geophysical Journal International, 207, no. 2, p. 1142-1157, https://doi.org/10.1093/gji/ggw326

8. Bouligand, C., G. Hulot, et al. (2005) , Statistical palaeomagnetic field modelling and dynamo numerical simulation, Geophysical Journal International, 161, no. 3, p. 603-626, https://doi.org/10.1111/j.1365-246x.2005.02613.x

9. Christensen, U. R. (2011) , Geodynamo models: Tools for understanding properties of Earth's magnetic field, Physics of the Earth and Planetary Interiors, 187, no. 3-4, p. 157-169, https://doi.org/10.1016/j.pepi.2011.03.012

10. Constable, C. G., C. L. Johnson (1999) , Anisotropic paleosecular variation models: implications for geomagnetic field observables, Physics of the Earth and Planetary Interiors, 115, no. 1, p. 35-51, https://doi.org/10.1016/s0031-9201(99)00065-5

11. Constable, C. G., R. L. Parker (1988) , Statistics of the geomagnetic secular variation for the past 5 m.y., Journal of Geophysical Research, 93, no. B10, p. 11,569, https://doi.org/10.1029/jb093ib10p11569

12. Constable, C. G., M. Korte, S. Panovska (2016) , Persistent high paleosecular variation activity in southern hemisphere for at least 10,000 years, Earth and Planetary Science Letters, 453, p. 78-86, https://doi.org/10.1016/j.epsl.2016.08.015

13. Cox, A., R. R. Doell (1960) , Review of paleomagnetism, Geological Society of America Bulletin, 71, no. 6, p. 645, https://doi.org/10.1130/0016-7606(1960)71[645:rop]2.0.co;2

14. Cromwell, G., C. L. Johnson, et al. (2018) , PSV10: A Global Data Set for 0-10 Ma Time-Averaged Field and Paleosecular Variation Studies, Geochemistry, Geophysics, Geosystems, 19, no. 5, p. 1533-1558, https://doi.org/10.1002/2017gc007318

15. Draeger, U., M. Prévot, et al. (2006) , Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophysical Journal International, 166, no. 1, p. 12-32, https://doi.org/10.1111/j.1365-246x.2006.02862.x

16. Frisch, U. (1995) , Turbulence, Cambridge University Press, Cambridge, https://doi.org/10.1017/cbo9781139170666

17. Glatzmaier, G. A., R. S. Coe, et al. (1999) , The role of the Earth's mantle in controlling the frequency of geomagnetic reversals, Nature, 401, no. 6756, p. 885-890, https://doi.org/10.1038/44776

18. Gribov, S. K., A. V. Dolotov, V. P. Shcherbakov (2017) , Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts, Izvestiya, Physics of the Solid Earth, 53, no. 2, p. 274-292, https://doi.org/10.1134/s1069351317010062

19. Hongre, L., G. Hulot, A. Khokhlov (1998) , An analysis of the geomagnetic field over the past 2000 years, Physics of the Earth and Planetary Interiors, 106, no. 3-4, p. 311-335, https://doi.org/10.1016/s0031-9201(97)00115-5

20. Hospers, J. (1954) , Rock Magnetism and Polar Wandering, Nature, 173, no. 4416, p. 1183-1184, https://doi.org/10.1038/1731183a0

21. Hulot, G., J. L. Le Mouël (1994) , A statistical approach to the Earth's main magnetic field, Physics of the Earth and Planetary Interiors, 82, no. 3-4, p. 167-183, https://doi.org/10.1016/0031-9201(94)90070-1

22. Hulot, G., A. Khokhlov, C. Johnson (2012) , How different is the time-averaged field from that of a geocentric axial dipole? Making the best of paleomagnetic directional data using the statistical giant gaussian process approach, Abstract GP24A-03 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec., p. GP24A-03, AGU, US (https://ui.adsabs.harvard.edu/abs/2012AGUFMGP 24A..03H/abstract)

23. Hulot, G., A. Khokhlov, J. L. L. Le Mouël (1997) , Uniqueness of mainly dipolar magnetic fields recovered from directional data, Geophysical Journal International, 129, no. 2, p. 347-354, https://doi.org/10.1111/j.1365-246x.1997.tb01587.x

24. Johnson, C. L., C. G. Constable (1997) , The time-averaged geomagnetic field: global and regional biases for 0-5 Ma, Geophysical Journal International, 131, no. 3, p. 643-666, https://doi.org/10.1111/j.1365-246x.1997.tb06604.x

25. Johnson, C. L., P. McFadden (2015) , The Time-Averaged Field and Paleosecular Variation, Treatise on Geophysics, p. 385-417, Elsevier, Amsterdam, https://doi.org/10.1016/b978-0-444-53802-4.00105-6

26. Johnson, C. L., C. G. Constable, et al. (2008) , Recent investigations of the 0-5 Ma geomagnetic field recorded by lava flows, Geochemistry, Geophysics, Geosystems, 9, no. 4, p. 1-31, https://doi.org/10.1029/2007gc001696

27. Kaiser, R. (2012) , Uniqueness and non-uniqueness in the non-axisymmetric direction problem, The Quarterly Journal of Mechanics and Applied Mathematics, 65, no. 3, p. 347-360, https://doi.org/10.1093/qjmam/hbs005

28. Khokhlov, A., G. Hulot (2013) , Probability uniformization and application to statistical palaeomagnetic field models and directional data, Geophysical Journal International, 193, no. 1, p. 110-121, https://doi.org/10.1093/gji/ggs118

29. Khokhlov, A., V. Shcherbakov (2015) , Palaeointensity and Brunhes palaeomagnetic field models, Geophysical Journal International, 202, no. 2, p. 1419-1428, https://doi.org/10.1093/gji/ggv236

30. Khokhlov, A., G. Hulot, C. Johnson (2013) , On the contribution of g20 and g30 in the time-averaged paleo- magnetic field: First results from a new giant gaussian process inverse modeling approach, Abstract GP53D-04 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec., p. GP53D-04, AGU, US (http://abstract search.agu.org/meetings/2013/ FM/GP53D-04.html)

31. Khokhlov, A., G. Hulot, C. Bouligand (2006) , Testing statistical palaeomagnetic field models against directional data affected by measurement errors, Geophysical Journal International, 167, no. 2, p. 635-648, https://doi.org/10.1111/j.1365-246x.2006.03133.x

32. Khokhlov, A., G. Hulot, J. Carlut (2001) , Towards a self-consistent approach to palaeomagnetic field modelling, Geophysical Journal International, 145, no. 1, p. 157-171, https://doi.org/10.1111/j.1365-246x.2001.01386.x

33. Khokhlov, A., G. Hulot, J. L. Le Mouël (1999) , On the Backus Effect-II, Geophysical Journal International, 137, no. 3, p. 816-820, https://doi.org/10.1046/j.1365-246x.1999.00843.x

34. Khokhlov, A., G. Hulot, J. L. L. Le Mouël (1997) , On the Backus Effect-I, Geophysical Journal International, 130, no. 3, p. 701-703, https://doi.org/10.1111/j.1365-246x.1997.tb01864.x

35. Khokhlov, A. V., F. Lhuillier, V. P. Shcherbakov (2017) , Intermittence and peculiarities of a statistic characteristic of the geomagnetic field in geodynamo models, Izvestiya, Physics of the Solid Earth, 53, no. 5, p. 695-701, https://doi.org/10.1134/s106935131705007x

36. Lhuillier, F., G. Hulot, Y. Gallet (2013) , Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo, Physics of the Earth and Planetary Interiors, 220, p. 19-36, https://doi.org/10.1016/j.pepi.2013.04.005

37. Licht, A., G. Hulot, et al. (2013) , Ensembles of low degree archeomagnetic field models for the past three millennia, Physics of the Earth and Planetary Interiors, 224, p. 38-67, https://doi.org/10.1016/j.pepi.2013.08.007

38. Meert, J. G. (2009) , In GAD we trust, Nature Geoscience, 2, no. 10, p. 673-674, https://doi.org/10.1038/ngeo635

39. Merrill, R., M. McElhinny, P. McFadden (1998) , The Magnetic Field of the Earth, Academic Press, San Diego

40. Muxworthy, A. R. (2017) , Considerations for Latitudinal Time-Averaged-Field Palaeointensity Analysis of the Last Five Million Years, Frontiers in Earth Science, 5, https://doi.org/10.3389/feart.2017.00079

41. Press, W., S. Teukolsky, et al. (2002) , Numerical Recipes in C++, Cambridge University Press, Cambridge

42. Quidelleur, X., J.-P. Valet, et al. (1994) , Long-term geometry of the geomagnetic field for the last five million years: An updated secular variation database, Geophysical Research Letters, 21, no. 15, p. 1639-1642, https://doi.org/10.1029/94gl01105

43. Shcherbakov, V. P., S. K. Gribov, et al. (2019) , On the Reliability of Absolute Palaeointensity Determinations on Basaltic Rocks Bearing a Thermochemical Remanence, Journal of Geophysical Research: Solid Earth, 124, no. 8, p. 7616-7632, https://doi.org/10.1029/2019jb017873

44. Shcherbakov, V. P., A. V. Khokhlov, N. K. Sycheva (2019) , Analysis of the Hypothesis of a Giant Gaussian Process as a Means for Describing Secular Variations of the Geomagnetic Field Vector, Izvestiya, Physics of the Solid Earth, 55, no. 1, p. 182-194, https://doi.org/10.1134/s1069351319010099

45. Shcherbakov, V. P., N. K. Sycheva, S. K. Gribov (2017) , Experimental and numerical simulation of the acquisition of chemical remanent magnetization and the Thellier procedure, Izvestiya, Physics of the Solid Earth, 53, no. 5, p. 645-657, https://doi.org/10.1134/s1069351317040085

46. Smirnov, A. V. (2005) , Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, Journal of Geophysical Research, 110, no. B6, https://doi.org/10.1029/2004jb003445

47. Tao, T. (2011) , An Introduction to Measure Theory, American Mathematical Society, Providence, Rhode Island

Войти или Создать
* Забыли пароль?