WinGeol's FaultTrace is a software tool assisting in semi-automatic structural geological mapping of faults and bedding planes. Digital elevation models - such as, for instance, SRTM or ALOS data - are used in combination with satellite imagery for a first structural geological assessment without the requirement of being at the site. Therefore, it is well suited for inaccessible terrain. Borehole data, geological and seismic profiles can be displayed to support the mapping process. Plane elements can be assigned to single as well as to more complex composite geological structures. Moreover, previously mapped data can be densified by interpolation, which is useful to enhance the mapping quality. The tool aims to provide a virtual environment allowing for fast-track and optimized data generation for 3D geological models. The functionality of FaultTrace is demonstrated in two different case studies: The Richãt Structure in Mauritania shows relatively planar fault structures within low-relief topography; the Vineh Structure in Iran shows a complex folding in high mountainous terrain. The studies discuss which structural geological settings let expect a satisfying performance of FaultTrace, and what factors limit the achievement of meaningful results. For the most part, the findings are independent of FaultTrace and, thus, valid for similar software tools.
structural geology, faults, bedding planes, 3D semi-automatic computer-assisted mapping, remote sensing, Richãt Structure, Karaj Water Conveyance Tunnel
1. Abdullah, A., S. Nassr, A. Ghaleeb (2013) , Remote Sensing and Geographic Information System for Fault Segments Mapping a Study from Taiz Area, Journal of Geological Research, 2013, no. 201757, p. 16, https://doi.org/10.1155/2013/201757.
2. Akram, M. S., K. Mirza, M. Zeeshan, I. Ali (2019) , Correlation of Tectonics with Geologic Lineaments Interpreted from Remote Sensing Data for Kandiah Valley, Khyber-Pakhtunkhwa, Journal of the Geological Society of India, 93, p. 607-613, https://doi.org/10.1007/s12594-019-1224-7. ; ; EDN: https://elibrary.ru/ZKMGZQ
3. Alganci, U., B. Besol, E. Sertel (2018) , Accuracy Assessment of Different Digital Surface Models. International Society for Photogrammetry and Remote Sensing, International Journal of Geo-Information, 7, no. 114, p. 16, https://doi.org/10.3390/ijgi7030114.
4. Alshayef, M. S., A. M. Mohammed, A. Javed, et al. (2017) , Manual and Automatic Extraction of Lineaments From Multispectral Image in Part of Al-Rawdah, Shabwah, Yemen by Using Remote Sensing and GIS Technology, International Journal of New Technology and Research, 3, no. 2, p. 67-73.
5. Allmendinger, R. W. (2018) , A Structural Geology Laboratory Manual for the 21st Century, v.1.8.0, 325 pp., Cornell University - Engineering Earth and Atmospheric Sciences, College of Agriculture and Life Sciences, Ithaca, New York.
6. Bagheri, A., A. Asgary, J. Levy, M. Rafieian (2006) , A Performance Index for Assessing Urban Water Systems: A Fuzzy Inference Approach, Journal of the American Water Works Association, 98, no. 11, p. 84-92, https://doi.org/10.1002/j.1551-8833.2006.tb07807.x.
7. Barringer, R. W. (1967) , World's Meteorite Craters "Astroblemes", Meteoritics and Planetary Science, 3, no. 3, p. 151-157, https://doi.org/10.1111/j.1945-5100.1967.tb00368.x.
8. Bayik, C., K. Becek, C. Mekik, M. Ozendi (2018) , On the Vertical Accuracy of the ALOS World 3D-30m Digital Elevation Model, Remote Sensing Letters, 9, no. 6, p. 607-615, https://doi.org/10.1080/2150704X.2018.1453174.
9. Cailleux, A., A. Guillemaut, C. Pomerol (1964) , Présence de Coésite, Indice de Hautes Pressions, dans l'Accident Circulaire des Richat, Comptes Rendus de l'Académie des Sciences, 258, p. 5488-5490.
10. Chu, T., K. E. Lindenschmidt (2017) , Comparison and Validation of Digital Elevation Models Derived from InSAR for a Flat Inland Delta in the High Latitudes of Northern Canada, Canadian Journal of Remote Sensing, 43, no. 2, p. 109-123, https://doi.org/10.1080/07038992.2017.1286936.
11. Deynoux, M., R. Trompette (1971) , La Série Stratigraphique des Richat; Comparaison avec l'Adrar de Mauritanie (Sahara occidental), Bulletin de la Société Géologique de France, S7-XIII, no. 1-2, p. 111-117, https://doi.org/10.2113/gssgfbull.S7-XIII.1-2.111.
12. Dietz, R., R. Fudali, W. Cassidy, et al. (1969) , Richat and Semsiyat Domes (Mauritania): Not Astroblemes, Geological Society of America Bulletin, 80, no. 7, p. 1367-1372, https://doi.org/10.1130/0016-7606(1969)80[1367:RASDMN]2.0.CO;2.
13. Elhag, M., D. Alshamsi (2019) , Integration of Remote Sensing and Geographic Information Systems for Geological Fault Detection on the Island of Crete, Greece, Geoscientific Instrumentation, Methods and Data Systems, 8, p. 45-54, https://doi.org/10.5194/gi-8-45-2019.
14. Elkhrachy, I. (2019) , Vertical Accuracy Assessment for SRTM and ASTER Digital Elevation Models: A Case Study of Najran City, Saudi Arabia, Ain Shams Engineering Journal, 9, no. 4, p. 1807-1817, https://doi.org/10.1016/j.asej.2017.01.007.
15. Faber, R., G. Domej (2020) , Computer-Assisted Geological Mapping (CAGEM) in 3D with WinGeol by TerraMath: the Richãt Structure in Mauritania, Geophysical Research Abstracts, vol. 22 (EGU2020-2439), European Geoscience Union General Assembly, Vienna, Austria, https://doi.org/10.5194/egusphere-egu2020-2439.
16. Farhadian, H., H. Katibeh, P. Huggenberger, et al. (2016) , Empirical Model for Estimating Groundwater Flow into Tunnel in Discontinuous Rock Masses, Environmental Earth Sciences, 74, no. 471, p. 16, https://doi.org/10.1007/s12665-016-5332-z. ; ; EDN: https://elibrary.ru/EOMCVC
17. Farhadian, H., A. Nikvar-Hassani, H. Katibeh (2017) , Groundwater Inflow Assessment to Karaj Water Conveyance Tunnel, Northern Iran, Korean Society of Civil Engineers Journal, 21, no. 6, p. 2429-2438, https://doi.org/10.1007/s12205-016-0995-2. ; ; EDN: https://elibrary.ru/GWXJBV
18. Farr, T.G., P.A. Rosen, E. Caro, et al. (2007) , The Shuttle Radar Topography Mission, Reviews of Geophysics, 45, no. 2, p. 33, https://doi.org/10.1029/2005RG000183. ; ; EDN: https://elibrary.ru/XPMJQT
19. Fudali, R.F. (1969) , Coesite from the Richat Dome, Mauritania: A Misidentification, Science, 166, no. 3902, p. 228-230, https://doi.org/10.1126/science.166.3902.228.
20. Ghiasi, V., S. Ghiasi, A. Prasad (2012) , Evaluation of Tunnels Under Squeezing Rock Condition, Journal of Engineering, Design and Technology, 10, no. 2, p. 168-179, https://doi.org/10.1108/17260531211241167.
21. Gupta, R. P. (2003) , , , p. 656, https://doi.org/10.1007/978-3-662-05283-9.
22. Hassanpour, J., J. Rostami, M. Khamehchiyan, et al. (2010) , TBM Performance Analysis in Pyroclastic Rocks: A Case History of Karaj Water Conveyance Tunnel, Rock Mechanics and Rock Engineering, 43, p. 427-445, https://doi.org/10.1007/s00603-009-0060-2. ; ; EDN: https://elibrary.ru/ODWEMZ
23. Hassanpour, J., J. Rostami, S. Tarigh-Azali, J. Zhao (2014) , Introduction of an Empirical TBM Cutter Wear Prediction Model for Pyroclastic and Mafic Igneous Rocks; a Case History of Karaj Water Conveyance Tunnel, Iran, Tunnelling and Underground Space Technology, 43, p. 222-231, https://doi.org/10.1016/j.tust.2014.05.007.
24. Jalali, M. (2018) , Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method- Case Study: Karaj Water Conveyance Tunnel, International Journal of Mining and Geo-Engineering, 52, no. 1, p. 87-94, https://doi.org/10.22059/ijmge.2018.66155.
25. Janda, C., R. Faber, C. Hager, B. Grasemann, et al. (2003) , Automatic Fault Tracing of Active Faults in the Sutlej Valley (NW-Himalayas, India), Geophysical Research Abstracts vol. 5(10334), European Geophysical Society, Vienna, Austria.
26. Julzarika, A. (2015) , Height Model Integration of ALOS PALSAR, X SAR, SRTM C and ICESAT/GLAS, International Journal of Remote Sensing and Earth Sciences, 12, no. 2, p. 107-116, https://doi.org/10.30536/j.ijreses.2015.v12.a2691.
27. Karamouz, M., B. Zahraie, S. Araghi-Nejhad, et al. (2001) , An Integrated Approach to Water Resources Development of the Tehran Region in Iran, Journal of the American Water Resources Association, 37, no. 5, p. 1301-1211, https://doi.org/10.1111/j.1752-1688.2001.tb03640.x.
28. Khanlari, G., R. Ghaderi-Meybodi (2011) , Analysis of Rock Burst in Critical Section of Second Part of Karaj-Tehran Water Supply Tunnel, Geotechnical Safety and Risk, Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk, Munich, Germany.
29. Khanlari, G., R. Ghaderi-Meybodi (2013) , Evaluation of Rockburst Potential in Second Part of Karaj-Tehran Water Conveyance Tunnel, Journal of Engineering Geology, 6, no. 2, p. 1545-1558.
30. Khanlari, G., R. Ghaderi-Meybodi, E. Mokhtari (2012) , Engineering Geological Study of the Second Part of Water Supply Karaj to Tehran Tunnel with Emphasis on Squeezing Problems, Engineering Geology, 145-146, p. 9-17, https://doi.org/10.1016/j.enggeo.2012.06.001.
31. Matton, G. (2008) , Le Complèxe Crétacé du Richãt (Mauritanie); un Processus Alcalin Péri-Atlantique, , University of Québec, Chicoutimi, Canada, https://doi.org/10.1522/030084214.
32. Matton, G., M. Jébrak (2014) , The "Eye of Africa" (Richat dome, Mauritania): An Isolated Cretaceous Alkaline-Hydrothermal Complex, Journal of African Earth Sciences, 97, p. 109-124, https://doi.org/10.1016/j.jafrearsci.2014.04.006.
33. Matton, G., M. Jébrak, J. K. W. Lee (2005) , Resolving the Richat Enigma: Doming and Hydrothermal Karstification Above an Alkaline Complex, Geology, 33, no. 8, p. 665-668, https://doi.org/10.1130/G21542AR.1.
34. Master, S., J. Karfunkel (2001) , An Alternative Origin for Coesite from the Richat Structure, Mauritania, Meteoritics and Planetary Science, 36, no. 9/Supplement, p. A125.
35. Mirahmadi, M., M. Tabaei, M. Soleiman-Dehkordi (2016) , Studying the Effect of Tunnel Depth Variation on the Specific Energy of TBM, Case Study: Karaj-Tehran (Iran) Water Conveyance Tunnel, Journal of Engineering and Technological Sciences, 48, no. 4, p. 408-416, https://doi.org/10.5614%2Fj.eng.technol.sci.2016.48.4.3.
36. Monod, T. (1965) , Contribution l'Établissement d'une Liste d'Accidents Circulaires d'Origine Météoritique (Reconnue, Possible ou Supposée), Cryptoexplosive, etc., Ed. 2 (Catalogue XVIII), edited by Université de Dakar, 93 pp., Institut Fondamental d'Afrique Noire, Dakar, Senegal.
37. Morsali, M., M. Nakhaei, M. Rezaei, et al. (2017) , A New Approach to Water Head Estimation Based on Wwater Inflow Into the Tunnel (Case Study: Karaj Water Conveyance Tunnel), Quarterly Journal of Engineering Geology and Hydrogeology, 50, no. 2, p. 126-132, https://doi.org/10.1144/qjegh2016-015.
38. Morsali, M., M. Nakhaei, M. Rezaei, et al. (2018) , The Comparison of Effective Variables and Methods in Water Inflow into Hard Rock Tunnels (Case Study: Karaj Dam - Tehran Water Conveyance Tunnel), Scientific Quarterly Journal / Geosciences, 27, no. 107, p. 113-122, https://doi.org/10.22071/gsj.2018.63799.
39. Mukul, M., V Srivastava, S. Jade (2017) , Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula, Scientific Reports, 7, no. 41672, p. 10, https://doi.org/10.1038/srep41672. ; ; EDN: https://elibrary.ru/EERVRC
40. Netto, A. M., J. Fabre, G. Poupeau, M. Champenois (1992) , Datation Par Traces de Fission de la Structure Circulaire des Richat (Mauritanie), Comptes Rendus de l'Académie des Sciences, 314, no. 11, p. 1179-1186.
41. O'Leary, D. W., J. D. Friedman, H. A. Pohn (1976) , Lineament, Linear, Lineation: Some Proposed New Standards for Old Terms, Geological Society of America Bulletin, 87, no. 10, p. 1463-1469, https://doi.org/10.12691/jgg-3-3-2.
42. Poupeau, G., J. Fabre, E. Labrin, et al. (1996) , Nouvelles Datations par Traces de Fission de la Structure Circulaire des Richat (Mauritanie), Mémoire du Service Géologique de l'Algérie, 8, p. 231-236, https://doi.org/10.13140/RG.2.1.4820.3361.
43. Rajabi, S., M. Eliassi, A. Saidi (2012) , Statistic and Genetic Investigation of Faults in North Tehran Tectonic Wedge (South Central Alborz), Arabian Journal of Geosciences, 5, p. 1269-1277, https://doi.org/10.1007/s12517-010-0270-7.
44. Reif, D., B. Grasemann, R. Faber (2011) , Quantitative Structural Analysis Using Remote Sensing Data: Kurdistan, Northeast Iraq, Bulletin of the American Association of Petroleum Geologists, 95, no. 6, p. 941-956, https://doi.org/10.1306/11151010112. ; ; EDN: https://elibrary.ru/YBYWZN
45. Richard-Molard, J. (1948) , La Boutonnière du Richãt en Adrar Mauritanien, Comptes Rendus de l'Académie des Sciences, 227, p. 142-143.
46. Rodrigues, T. G., W. R. Paradella, C. G. Oliveira (2011) , Evaluation of the Altimetry from SRTM-3 and Planimetry from High-Resolution PALSAR FBD Data for Semi-Detailed Topographic Mapping in the Amazon Region, Anais da Academia Brasileira de Ciências, 83, no. 3, p. 953-966, https://doi.org/10.1590/S0001-37652011000300014.
47. Santillan, J. R., M. Makinano-Santillan (2016) , Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and Srtm Global Dems Over Northeastern Mindanao, Philippines, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI, no. B4, p. 149-156, https://doi.org/10.5194/isprs-archives-XLI-B4-149-2016.
48. Sao, O., P. Giresse, et al. (2008) , Les Environnements Sédimentaires des Gisements Pré-acheuléens et Acheuléens des Wadis Akerdil et Bamouéré (Guelb er-Richãt, Adrar, Mauritanie), une Première Approche, L'Anthropologie, 112, no. 1, p. 1-14, https://doi.org/10.1016/j.anthro.2008.01.001.
49. Scheffers, A. M., S. M. May, D. H. Kelletat (2015) , Tectonic Landforms, edited by Scheffers A. M., May S. M., Kelletat D. H., , p. 75-120, https://doi.org/10.1007/978-94-017-9713-9_4.
50. Shawky, M., A. Moussa, Q. K. Hassan, N. El-Sheimy (2019) , Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models, Remote Sensing, 11, no. 3, p. 33, https://doi.org/10.3390/rs11030235.
51. Soleiman-Dehkordi , M., H. A. Lazemi, K. Shahriar (2015) , Application of the Strain Energy Ratio and the Equivalent Thrust per Cutter to Predict the Penetration Rate of TBM, Case Study: Karaj-Tehran Water Conveyance Tunnel of Iran, Arabian Journal of Geosciences, 8, p. 4833-4842, https://doi.org/10.1007/s12517-014-1495-7. ; ; EDN: https://elibrary.ru/GQJKIJ
52. Spitzbart, A. (1960) , A Generalization of Hermite's Interpolation Formula, The American Mathematical Monthly, 67, no. 1, p. 42-46, https://doi.org/10.2307/2308924.
53. Venegas, G., J. Martínez-Frías, et al. (2012) , Proceedings of the 10-th International GeoRaman Conference, Raman Spectroscopic Mineralogical Characterisation of Richat structure (Mauritania), GeoRaman Conference, Nancy, France.
54. Woolley, A. R. (2001) , Alkaline Rocks and Carbonatites of the World - Part 3 - Africa, 372 pp., The Geological Society of London, London, England.