STRUCTURE OF THE BOTTOM WATER FLOW IN THE VEMA CHANNEL BASED ON THE MEASUREMENTS FROM THE R/V AKADEMIK SERGEY VAVILOV
Аннотация и ключевые слова
Аннотация (русский):
The bottom waters in the Atlantic Ocean originate from the Weddell Sea. These waters of Antarctic origin flow from the Argentine Basin to the Brazil Basin along three pathways: through the Vema and Hunter channels and over the Santos Plateau. The Vema Channel is a conduit for the coldest and densest Antarctic waters to the north. It is a narrow passage between two terraces with a minimum width of 16 km. The propagation of bottom waters in the deep-water Vema Channel occurs as a well-mixed jet. The coldest part of the flow is displaced to the eastern slope of the deep-water channel due to the influence of the bottom Ekman friction. The second core of the flow is observed in the upper part of the channel over its western slope. This jet was also found in the continuation of the AABW flow at the exit from the Vema Channel. We analyze data over the section across the Vema Channel collected in several years of research from the R/V Akademik Sergey Vavilov .

Ключевые слова:
Antarctic Bottom Water, Vema Channel, abyssal flows, R/V Akademik Sergey Vavilov
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Frey, D. I., A. N. Novigatsky, et al. (2017a) , Water structure and currents in the Bear Island Trough in July-August, Russian Journal of Earth Sciences, 17, p. ES3003, https://doi.org/10.2205/2017ES000602

2. Frey, D. I., V. V. Fomin, et al. (2017b) , New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel, Doklady Earth Sciences, 474, no. 1, p. 561-564, https://doi.org/10.1134/S1028334X17050026

3. Frey, D. I., E. G. Morozov, et al. (2019a) , Thermohaline structure of Antarctic Bottom Water in the abyssal basins of the South Atlantic, Russian Journal of Earth Sciences, 19, p. ES5005, https://doi.org/10.2205/2019ES000679

4. Frey, D. I., E. G. Morozov, et al. (2019b) , Regional modeling of Antarctic Bottom Water flows in the key passages of the Atlantic, Journal of Geophysical Research: Oceans, 124, no. 11, p. 8414, https://doi.org/10.1029/2019JC015315

5. Hogg, N., G. Siedler, W. Zenk (1999) , Circulation and variability at the southern boundary of the Brazil Basin, J. Phys. Oceanogr., 29, p. 145-157, https://doi.org/10/dxw7bm

6. Johnson, D. A., S. E. McDowell, et al. (1976) , Abyssal topography, nephelometry, currents, and benthic boundary layer structure in the Vema Channel, J. Geophys. Res. Oceans, 81, p. 5771-5786, https://doi.org/10.1029/JC081i033p05771

7. Johnson, G. C. (2008) , Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes, J. Geophys. Res. Oceans, 113, p. C05027, https://doi.org/10.1029/2007JC004477

8. Jungclaus, J., M. Vanicek (1999) , Frictionally modified flow in a deep ocean channel: Application to the Vema Channel, J. Geophys. Res. Oceans, 104, no. C9, p. 21,123-21,136, https://doi.org/10.1029/1998JC900055

9. Lumpkin, R., K. Speer (2007) , Global ocean meridional overturning, J. Phys. Oceanogr., 37, p. 2550-2562, https://doi.org/10.1175/JPO3130.1

10. Mantyla, A. W., J. L. Reid (1983) , Abyssal characteristics of the World Ocean waters, Deep-Sea Res. I, 30, no. 8, p. 805-833, https://doi.org/10.1016/0198-0149(83)90002-X

11. McDonagh, E. L., M. Arhan, K. J. Heywood (2002) , On the circulation of bottom water in the region of the Vema, Channel Deep-Sea Res. I, 49, p. 1119-1139, https://doi.org/10.1016/S0967-0637(02)00016-X

12. Morozov, E. G., A. N. Demidov, R. Yu. Tarakanov (2008) , Transport of Antarctic Waters in the deep channels of the Atlantic Ocean, Doklady Earth Sciences, 423, no. 8, p. 1286-1289, https://doi.org/10.1134/S1028334X08080230

13. Morozov, E. G., A. N. Demidov, et al. (2010) , Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, 266 pp., Springer, Dordrecht, https://doi.org/10.1007/978-90-481-9358-5

14. Morozov, E. G., R. Yu. Tarakanov, et al. (2018) , Currents and water structure north of the Vema Channel, Russian Journal of Earth Sciences, 18, p. ES5006, https://doi.org/10.2205/2018ES000630

15. Morozov, E. G., D. I. Frey, R. Y. Tarakanov (2020a) , Flow of Antarctic Bottom Water from the Vema Channel, Geoscience Letters, 7, https://doi.org/10.1186/s40562-020-00166-4

16. Morozov, E. G., D. I. Frey, et al. (2020b) , The extreme northern jet of the Antarctic Circumpolar Current, Russian Journal of Earth Sciences, 20, p. ES5004, https://doi.org/10.2205/2020ES000717

17. Orsi, A. H., G. C. Johnsson, J. L. Bullister (1999) , Circulation, mixing, and production of Antarctic Bottom Water, Progress in Oceanogr., 43, p. 55-109, https://doi.org/10.1016/S0079-6611(99)00004-X

18. Speer, K. G., W. Zenk (1993) , The flow of Antarctic Bottom water into the Brazil Basin, J. Phys. Oceanogr., 23, p. 2667-2682, https://doi.org/10/b6k2sk

19. Tarakanov, R. Y., E. G. Morozov, D. I. Frey (2020) , Hydraulic continuation of the abyssal flow from the Vema Channel in the southwestern part of the Brazil Basin, J. Geophys. Res. Oceans, 125, p. e2020JC016232, https://doi.org/10.1029/2020JC016232

20. Wienders, N., M. Arhan, H. Mercier (2000) , Circulation at the western boundary of the South and Equatorial Atlantic: Exchanges with the ocean interior, J. Mar. Res., 58, p. 1007-1039, https://doi.org/10.1357/002224000763485782

21. Zenk, W., N. G. Hogg (1996) , Warming trend in Antarctic Bottom Water flowing into the Brazil Basin, Deep-Sea Res. I, 43, no. 9, p. 1461-1473, https://doi.org/10.1016/S0967-0637(96)00068-4 (in Russian)

Войти или Создать
* Забыли пароль?