A COMBINED ANALYSIS OF GEOMAGNETIC DATA AND COSMIC RAY SECONDARIES FOR THE SEPTEMBER 2017 SPACE WEATHER EVENT STUDIES
Аннотация и ключевые слова
Аннотация (русский):
The September 2017 solar flares and the subsequent geomagnetic storms driven by the coronal mass ejections were recognized as the ones of the most powerful space weather events during the current solar cycle. The occurrence of the most powerful solar flares and magnetic storms during the declining phase of a solar cycle is a common phenomenon, and the current cycle is no exception. Nowadays, thorough and multifactor space weather monitoring is required to prevent the damages from the destructive space weather impact on the technological systems on the Earth. The purpose of this study is to better characterize these events by applying the generalized characteristic function approach for combined analysis of geomagnetic activity indices, total electron content data and secondary cosmic ray data from the muon hodoscope that contained Forbush decreases resulting from solar plasma impacts. A combined analysis of secondary cosmic ray data from the muon hodoscope, geomagnetic activity indices and total electron content data is presented. The main advantage of this approach is the possibility to identify low-amplitude specific features in datasets characterizing several environmental sources. As an example, different datasets available over the storm period 6-11 September 2017 were analyzed in a unified way. The new developed technique allows us to study various space weather effects and obtain new mutually supportive information on different phases of storm evolution, based on the geomagnetic and other environmental observations in the near-Earth space.

Ключевые слова:
Space weather events, magnetic storms and substorms, muon flux, instruments and techniques, generalized characteristic functions
Список литературы

1. Astapov, I. I., N. S. Barbashina, V. V. Borog, I. S. Veselovskii, N. V. Osetrova, A. A. Petrukhin, V. V. Shutenko, I. I. Yashin (2017), Investigation of geoeffective and non-geoeffective CMEs according to data from the URAGAN muon hodoscope, B. Russ. Acad. Sci.: Phys., 81, no. 2, p. 183-186, https://doi.org/10.3103/S1062873817020046.

2. Balogh, A., H. S. Hudson, K. Petrovay, et al. (2014), Introduction to the Solar Activity Cycle: Overview of Causes and Consequences, Space Sci. Rev., 186, p. 1-15, https://doi.org/10.1007/s11214-014-0125-8.

3. Barbashina, N. S., R. P. Kokoulin, K. G. Kompaniets, et al. (2008), The URAGAN wide-aperture large-area muon hodoscope, Instrum. Exp. Tech., 51, no. 2, p. 180-186, https://doi.org/10.1134/S002044120802005X.

4. Barbashina, N. S., I. I. Astapov, T. A. Belyakova, et al. (2017), Muon flux variations detected by the URAGAN muon hodoscope during thunderstorms, B. Russ. Acad. Sci.: Phys., 81, no. 2, p. 230-233, https://doi.org/10.3103/S106287381702006X.

5. Cane, H. V. (2000), Coronal Mass Ejections and Forbush Decreases, Space Sci. Rev., 93, no. 55, https://doi.org/10.1023/A:1026532125747.

6. De Haro, B. F. Barbás, V. H. Ríos, Gómez} {A. , Santillán M. Pérez (2002), Variations of total electron content during a magnetic storm, Geofís. Int., 41, no. 1, p. 49-55.

7. De Smith, M. J. (2015), STATSREF: Statistical Analysis Handbook - A Web-Based Statistics Resource, The Winchelsea Press, Winchelsea, UK.

8. Garner, T. W., T. L. Gaussiran II, B. W. Tolman, R. B. Harris, R. S. Calfas, H. Gallagher (2008), Total electron content measurements in ionospheric physics, Adv. Space Res., 42, p. 720-726, https://doi.org/10.1016/j.asr.2008.02.025.

9. Getmanov, V. G., R. V. Sidorov, R. A. Dabagyan (2015), A method of filtering signals using local models and weighted averaging functions, Meas. Tech., 58, p. 1029-1036, https://doi.org/10.1007/s11018-015-0837-5.

10. Gvishiani, A., A. Soloviev, R. Krasnoperov, R. Lukianova (2016a), Automated hardware and software system for monitoring the Earth's magnetic environment, Data Science Journal, 15, p. 18, https://doi.org/10.5334/dsj-2016-018.

11. Gvishiani, A. D., R. V. Sidorov, R. Yu. Lukianova, A. A. Soloviev (2016b), Geomagnetic activity during St. Patrick's Day storm inferred from global and local indicators, Russ. J. Earth Sci., 16, p. ES6007, https://doi.org/10.2205/2016ES000593.

12. Hmelevskoy, V. K. (1999), Geophysical Methods of a Research of Crust: Manual, Book 2, 184 pp., International University of the Nature, Society and Person, Dubna (in Russian).

13. Loewe, C. A., G. W. Prölss (1997), Classification and mean behavior of magnetic storms, J. Geophys. Res., 102, no. A7, p. 14,209-14,213, https://doi.org/10.1029/96JA04020.

14. Mandea, M., M. Purucker (2018), The Varying Core Magnetic Field from a Space Weather Perspective, Space Sci. Rev., 214, p. 11, https://doi.org/10.1007/s11214-017-0443-8.

15. Mikhaylenko, A. S., N.V. Ampilogov, N.S. Barbashina, et al. (2011), Studying variations of muon flux on the Earth's surface, based on muon hodoscope data during nonstationary atmospheric processes, B. Russ. Acad. Sci.: Phys., 75, no. 6, p. 827-830, https://doi.org/10.3103/S1062873811060323.

16. Nikitin, A. A. (1979), Statistical Methods for Distinguishing Geophysical Anomalies, 280 pp., Nedra, Moscow (in Russian).

17. Nikitin, A. A. (1986), Theoretical Basis for Processing Geophysical Information: Textbook, 342 pp., Nedra, Moscow (in Russian).

18. Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, p. 664-676, https://doi.org/10.1086/146579.

19. Solanki, S. K. (2003), Sunspots: An overview, Astron. Astrophys. Rev., 11, no. 2-3, p. 153-286, https://doi.org/10.1007/s00159-003-0018-4.

20. Struminsky, A. B., I. V. Zimovetz (2010), Observations of the December 6, 2006 solar flare: Electron acceleration and plasma heating, Astron. Lett., 36, p. 430, https://doi.org/10.1134/S106377371006006X.

21. Troyan, V., Yu. Kiselev (2010), Statistical Methods of Geophysical Data Processing, 456 pp., World Scientific Publishing Co. Pte. Ltd, Singapore, https://doi.org/10.1142/7608.

22. Usoskin, I. G. (2017), A history of solar activity over millennia, Living Rev. Sol. Phys., 14, p. 3, https://doi.org/10.1007/s41116-017-0006-9.

23. Xu, Sh., E. Thiemann, D. Mitchell, et al. (2018), Observations and Modeling of the Mars Low-Altitude Ionospheric Response to the 10 September 2017 X-Class Solar Flare, Geophys. Res. Lett., 45, p. 15, https://doi.org/10.1029/2018GL078524.

24. Zolotukhina, N., N. Polekh, V. I. Kurkin, D. Rogov, E. Romanova, M. Chelpanov (2017), Ionospheric effects of St. Patrick's storm over Asian Russia: 17-19 March 2015: Ionospheric effects over Russia, J. Geophys. Res.: Space Phys., 122, p. 2484-2504, https://doi.org/10.1002/2016JA023180.

Войти или Создать
* Забыли пароль?