The results of wave simulation in the Black Sea using the SWAN spectral wave model and wind forcing data from the NCEP/CFSR reanalyze are presented in this paper. The calculations were done using the special unstructured mesh with spatial resolution of 10 km in the open sea and 200 m in the Tsemes Bay. The assessment of the wave simulation accuracy was performed on the basis of the satellite altimetry data and direct wave measurements in the shallow water. When comparing the calculated significant wave height with observational data the correlation equaled 0.8, while the root mean square error equaled 0.3. The comparison of simulation results and satellite data also showed good correlation.
Black Sea, Tsemes Bay, wind waves, wave modeling, SWAN, unstructured mesh, satellite altimetry
1. Akpinar, A., Van Vledder, G., Kömürcü, M. ., Özger, M. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea, // Continental Shelf Research, 2012. - v. 50-51 - p. 80.
2. Akpinar, A., Ponce de León, S. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea, // Dynamics of Atmospheres and Oceans, 2016. - v. 73 - p. 61.
3. Arkhipkin, V. S., et al. Wind waves in the Black Sea: results of a hindcast study, // Natural Hazards and Earth System Science, Copernicus Gesellschaften (Germany), 2014. - v. 14 - no. 11 - p. 2883.
4. Arhipkin, V., et al. Assessing the potential of wave energy in coastal waters of Crimea peninsula, // Al'ternativnaja Jenergetika i Jekologija, 2015. - no. 20 - p. 25.
5. Badulin, S. I. A physical model of sea wave period from altimeter data, // J. Geophys. Res. Oceans, 2014. - v. 119 - p. 856.
6. Booij, N., Ris, R. C., Holthuijsen, L. H. A third-generation wave model for coastal regions: 1. Model description and validation, // J. Geophys. Res., 1999. - v. 104 - p. 7649.
7. Bukhanovskij, . W., Lopatukhin, L. I., Chernisheva, E. S., Kolesov, A. M. The storm on the Black Sea on 11 November 2007 and statistics of extreme storms of the sea, // Proceedings of the Russian Georgaphical Society, 2009. - v. 141 - p. 71.
8. Chelton, D. B., McCabe, P. J. A review of satellite altimeter measurement of sea surface wind speed: With a proposed new algorithm, // J. Geophys. Res., 1985. - v. 90 - p. 4707.
9. Goldhirsh, J., Dobson, E. A Recommended Algorithm for the Determination of Ocean Surface Wind Speed Using a Satellite-Borne Radar Altimeter, Report JHU/APL SIR-85-U005 - Laurel, MD: App. Phys. Lab., Johns Hopkins University., 1985.
10. Gommenginger, C. P., Srokosz, M. A., Challenor, P. G., Cotton, P. D. Measuring ocean wave period with satellite altimeters: A simple empirical model, // Geophys. Res. Lett., 2003. - v. 30 - no. 22 - p. 4707.
11. Janssen, P., Abdalla, S., Hersbsch, H., Bidlot, J.-R. Error estimation of buoy, satellite, and model wave height data, // Journal of Atmosphere and Oceanic Technology, 2006. - v. 24 - no. 9 - p. 4707.
12. Ivonin, D. V., Telegin, V. A., Chernyshov, P. V., Myslenkov, S. A., Kuklev, S. B. Possibilities of X-band nautical radars for monitoring of wind waves near the coast, // Oceanology, 2016. - v. 56 - no. 4 - p. 591.
13. Kabatchenko, I. M., Matushevskij, G. V. , Reznikov, M. V., Zaslavskij, M. M. Modelirovanie vetra i voln pri vtorichnyh termicheskih ciklonah na Chernom more [Numerical modeling of wind and waves in a secondary cyclone at the Black sea], // Meteorologija i Gidrologija, 2001. - no. 5 - p. 61.
14. Kos'yan, R. D., Divinsky, B. V., Pushkarev, O. V. Measurements of parameters of wave processes in the open sea near Gelendzhik // The Eight Workshop of NATO TU-WAVES/ Black Sea - Ankara, Turkey: METU., 1998. - p. 5.
15. Lopatuhin, L. I., et al. Spravochnye Dannye po Rezhimu Vetra i Volneniya Baltijskogo, Severnogo, Chernogo, Azovskogo i Sredizemnogo Morej - Saint Petersburg: Rossijskij Morskoj Registr Sudohodstva., 2006.
16. Mackay, E. B. L., et al. A parametric model for ocean wave period from Ku-band altimeter data, // J. Geophys. Res., 2008. - v. 113 - p. 5.
17. Medvedeva, A. Yu., Arkhipkin, V. S., Myslenkov, S. A., Zilitinkevich, S. S. Wave climate of the Baltic Sea following the results of the SWAN spectral model application, // Moscow University Bulletin. Series 5. Geography, 2015. - no. 1 - p. 12.
18. Myslenkov, S. A., Arkhipkin, V. S. The wind wave analysis in Tsemes Bay of the Black Sea using the SWAN model, // Proceedings of the Hydrometcentre of Russia, 2013. - no. 350 - p. 58.
19. Myslenkov, S. A., Shestakova, A. A., Toropov, P. A. Numerical simulation of storm waves near the Northeastern coast of the Black sea, // Russian Meteorology and Hydrology, 2016. - no. 10 - p. 61.
20. Polonsky, A. B., Fomin, V. V., Garmashov, A. V. Characteristics of wind waves of the Black Sea, // Reports of the National Academy of Sciences of Ukraine, 2011. - v. 8 - p. 108.
21. Quilfen, Y., Chapron, B., Serre, M. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters, // Marine Geodesy, 2004. - v. 27 - p. 535.
22. Roland, A., Ardhuin, F. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean, // Ocean Dynamics, 2014. - v. 64 - no. 6 - p. 833.
23. Rusu, E. Strategies in using numerical wave models in ocean/coastal applications, // Journal of Marine Science and Technology, 2011. - v. 19 - p. 58.
24. Saha, Suranjana The NCEP Climate Forecast System Version 2, // J. Climate, 2014. - v. 27 - p. 2185.
25. Saleh Abdalla, Ku-band radar altimeter surface wind speed algorithm // Proc. ``Envisat Symposium 2007'', Montreux, 23-27 April 2007, ESA SP-636, July 2007 - Switzerland: ESA., 2007. - p. 23.
26. Saleh Abdalla, , Janssen, Peter A. E. M., Bidlot, Jean-Raymond Altimeter Near Real Time Wind and Wave Products: Random Error Estimation, // Marine Geodesy, 2011. - v. 34 - no. 3-4 - p. 393.
27. Stoliarova, E. V., Myslenkov, S. A. High resolution wave forecast system for Kerch strait, // Trudy Gidrometeorologicheskogo Nauchno-Issledovatel'skogo Centra Rossijskoj Federacii, 2015. - no. 354 - p. 24.
28. Surkova, G. V., Arkhipkin, V. S., Kislov, A. V. Atmospheric circulation and storm events in the Black Sea and Caspian Sea, // Centr. Eur. J. Geosci., 2013. - v. 5 - p. 548.
29. SWAN Team, SWAN Technical Documentation, SWAN Cycle III version 40.51A - Netherlands: Delft University of Technology., 2007. - 98 pp.
30. Toropov, P. A., Myslenkov, S. A., Shestakova, A. A. Numerical simulation of Novorossiysk bora and related wind waves using the WRF-ARW and SWAN models, // Russ. J. Earth Sci., 2012. - v. 12 - p. 548.
31. Valchev, N. N., Trifonova, E. V., Andreeva, N. K. Past and recent trends in the western Black Sea storminess, // Nat. Hazards Earth Syst. Sci., 2012. - v. 12 - p. 961.
32. Van Vledder, G. Ph., Adem Akpinar, Wave model predictions in the Black Sea: Sensitivity to wind fields, // Applied Ocean Research, 2015. - v. 53 - p. 161.
33. Zelen'ko, A. A., et al. Sistema prognozirovanija vetrovogo volnenija v Mirovom okeane i morjah Rossii, // Tr. Gos. Okeanograficheskogo Instituta, 2014. - v. 215 - p. 90.
34. Zijlema, M. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, // Coast. Eng., 2010. - v. 57 - p. 267.