STUDY OF INTERPLANETARY PARAMETERS, POLAR CAP POTENTIAL, AND POLAR CAP INDEX DURING QUIET EVENT AND HIGH INTENSITY LONG DURATION CONTINUOUS AE ACTIVITIES (HILDCAAS)
Аннотация и ключевые слова
Аннотация (русский):
We observed the interplanetary datasets, polar cap potential (PCV), three different types of High Intensity Long Duration Continuous AE Activities (HILDCAAs) and polar cap index (PCI) during geomagnetically quiet period. On each event, we examine the interplanetary electric field ($Ey$), polar cap potential (PCV), polar cap index (PCI) and westward auroral electrojet (AL) indices. We found little perturbations in $Ey$ during the quiet event, but significant perturbations during HILDCAAs. In particular, non-storm HILDCAA showed more perturbations in $Ey$ compared to the other two HILDCAAs. Due to sporadic energy pumping into the magnetosphere, $Ey$ was perturbed even after the non-storm HILDCAA. From CWT analysis, we found highest power intensities to have periodicity of more than 190 minutes for quiet event, non-storm HILDCAA and CIR-preceded HILDCAA. However, the magnitude of the higher power intensity was different: 11 units for PCV and PCI in quiet, 9 and 14 units respectively for PCV and PCI in non-storm HILDCAA, 15 units for PCV and PCI in CIR-preceded HILDCAA, and 23 and 14 units for PCV and PCI during ICME-preceded HILDCAA. PCV and PCI clearly showed that higher power intensities are found in higher timescales. In contrast, lower and middle power intensities are found across all timescales.

Ключевые слова:
Geomagnetic disturbances, Polar cap potential, HILDCAAs, Wavelet analysis
Список литературы

1. Adhikari, B. HILDCAA-related effects recorded in middle-low latitude magnetometers - Brazil: Instituto Nacional de Pesquisas Espaciais (INPE)., 2015.

2. Adhikari, B., Chapagain, N. P. Polar cap potential and merging electric field during high intensity long duration continuous auroral activity, // Journal of Nepal Physical Society, 2016. - v. 3 - no. 1 - p. 6.

3. Alves, M. V., Echer, E., Gonzalez, W. D. Geoeffectiveness of corotating interaction regions as measured by $Dst$ index, // J. Geophys. Res., 2006. - v. 111 - p. 6.

4. Antoine, J. P., Murenzi, R., Vandergheynest, P., Ali, S. T. Two-Dimensional Wavelets and their Relatives - Cambridge: Cambridge University Press., 2008.

5. Boyle, C. B., Reiff, P. H., Hairston, M. R. Empirical polar cap potentials, // J. Geophys. Res., 1997. - v. 102 - p. 6.

6. Cane, H. V., Richardson, I. G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002, // J. Geophys. Res., 2003. - v. 108 - p. 6.

7. Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference (Series in Applied Mathematics), Vol. 61 - Philadelphia, PA: SIAM., 1992.

8. Domingues, M. O., Mendes, O. J., Mendes da Costa, A. Wavelet techniques in atmospheric sciences, // Adv. Space Res., 2005. - v. 35 - no. 5 - p. 831.

9. Echer, E., Tsurutani, B. T., Gonzalez, W. D. Interplanetary origins of moderate ($-100$ nT $< Dst <-50$~nT) geomagnetic storms during solar cycle 23 (1996-2008), // J. Geophys. Res. Space Physics, 2013. - v. 118 - p. 385.

10. Farge, M. Wavelet transform and their applications to turbulence, // Annual Reviews of Fluid Mechanics, 1992. - v. 24 - p. 395.

11. Feynman, J., Gu, X. Y. Prediction of geomagnetic activity on time scales of one to ten years, // Rev. Geophys., 1986. - v. 24 - p. 650.

12. Gonzalez, W. D., et al. Interplanetary origin of geomagnetic storms, // Space Sci. Rev., 1999. - v. 88 - p. 529.

13. Gosling, J. T., Pizzo, V. J. Formation and evolution of corotating interaction regions and their three dimensional structure, // Space Sci. Rev., 1999. - v. 89 - p. 529.

14. Grossmann, A., Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape, // SIAM Journal on Mathematical Analysis, 1983. - v. 15 - p. 723.

15. Hairston, M. R., Drake, K. A., Skoug, R. Saturation of the ionospheric polar cap potential during the October-November 2003 superstorms, // J. Geophys. Res., 2005. - v. 110 - p. 723.

16. Hajra, R., Echer, E., Tsurutani, B. T., Gonzalez, W. D. Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors?, // J. Geophys. Res., 2013. - v. 118 - p. 5626.

17. Hajra, R., et al. Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23, // Journal of Geophysical Research, 2014. - v. 119 - p. 2675.

18. Hubbard, B. B. The World According to Wavelets: The Story of a Mathematical Technique in the Making - Natick, MA, USA: A. K. Peters, Ltd., 1998.

19. Kamide, Y. The Relationship between Field-Aligned Current and the Auroral Electrojects: A Review, // Space Sci. Rev., 1981. - v. 31 - no. 2 - p. 127.

20. Kan, J. R., Lee, L. C. Energy coupling function and solar wind magnetosphere dynamo, // Geophysical Research Letters, 1979. - v. 6 - p. 577.

21. Klausner, V., et al. Tsunami effects on the $Z$ component of the geomagnetic field, // J. Atmos. Sol. Terr. Phys., 2013. - v. 92 - p. 124.

22. Lau, K. M., Weng, H. Y. Climate signal detection using wavelet transform: How to make a time series sing, 1995. - p. 2391.

23. Mcelhinny, M. W. Palaeomagnetism and Plate Tectonics - London: Cambridge., 1973.

24. Miyoshi, Y., et al. Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, // J. Geophys. Res., 2003. - v. 108 - no. A1

25. Moon, G. H. Estimation of Polar Cap Potential and the Role of PC Index, // Astron. Space Sci., 2012. - v. 29 - no. 3 - p. 259.

26. Rioul, O., Vetterli, M. Wavelets and signal processing, // IEEE Signal Processing Mag., 1991. - v. 8 - p. 14.

27. Ruohoniemi, J. M., Baker, K. B. Largescale imaging of high latitude convection with Super Dual Auroral Radar Network HF radar observation, // J. Geophys. Res., 1998. - v. 103 - p. 14.

28. Shepherd, G. S. Polar cap potential saturation: Observations, theory, and modeling, // J. Atmos. Sol.-Terr. Phys., 2006. - v. 69 - p. 234.

29. Smith, E. J., Wolf, J. H. Observation of interaction region and corotating shocks between one and five au: Pioneer 10 and 11, // Geophysical Research Letters, 1976. - v. 3 - p. 234.

30. Soraas, F., et al. Evidence for particle injection as the cause of $Dst$ reduction during HILDCAA events, // J. Atmos. Sol. Terr. Phys., 2004. - v. 66 - p. 177.

31. Stewart, J. Two aspects of meaningful problem solving in science, // Sci. Ed., 1982. - v. 66 - p. 731.

32. Tsurutani, B. T., Gonzalez, W. D. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfven wave trains, // Planet. Space Sci., 1987. - v. 35 - p. 405.

33. Tsurutani, B. T., et al. Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events?, // J. Atmos. Sol. Terr. Phys., 2004. - v. 66 - p. 167.

34. Weimer, D. R. A flexible, IMF dependent model of high-latitude electric potentials having space weather applications, // Geophys. Res. Lett., 1996. - v. 23 - p. 167.

Войти или Создать
* Забыли пароль?