In accord with the standard Earth accretion scenario, the late accretion supervened the last collision with a massive proto-planet, segregation of the core, and (partial) solidification of the magma ocean. These processes took place $\approx 40$~Ma after Sun formation or somewhat later. Traces of the processes and respective materials have been preserved as specific elemental and isotopic abundances in the earth's mantle. Three groups of chemical elements, showing rather different behavior, allow the principal processes and materials to be restored: (i)~involatile siderophile elements and the $^{182}$Hf--$^{182}$W and $^{190}$Pt--$^{187}$Re--$^{186,187}$Os isotopic systematics highlight the time scale of core formation, the late veneer materials, and post-core-formation interactions between the mantle and the core; (ii)~involatile lithophile incompatible elements and the $^{147}$Sm--$^{143}$Nd isotopic systematics indicate the early differentiation of the silicate Earth; $^{176}$Lu--$^{176}$Hf one recorded the early crustal processes; (iii)~highly volatile elements, noble gases, and the $^{238}$U--$^{235}$U--$^{232}$Th--He--Ne and $^{244}$Pu--$^{238}$U--$^{129}$I--Xe systematics trace the accreting materials and the rate of mantle mixing and degassing. Recently proposed interpretations of this last systematics appear to be precarious and are particularly discussed in this contribution. During the late accretion a terrestrial regolith, including chondritic and solar-wind-irradiated materials, was rapidly accumulating on the surface of the early thick basaltic crust, enriched in incompatible elements. This early crust had not been preserved. Its overturn(s) into the mantle during several 100th~Ma after Sun formation and (partial) isolation from the mantle convection allow all principal observations, related to the informative systematics mentioned above, to be satisfied, providing the transfer of the crust[ampersand]regolith ``cake'' was not accompanying by fractionation and degassing, in contrast to present-day slab subduction.
Noble metals, noble gases, rare earth elements, isotope systematics, Earth, accretion, differentiation, degassing
1. Albarede, F. Volatile accretion history of the terrestrial planets and dynamic implications, // Nature, 2009. - v. 461 - p. 1227.
2. Albarede, F., Ballhaus, C., Blichert-Toft, J., Lee, C.-T., Marty, B., Moynier, F., Yin, Q.-Z. Asteroidal impacts and the origin of terrestrial and lunar volatiles, // Icarus, 2013. - v. 222 - p. 44.
3. Allegre, C. J. Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth, // Earth Planet. Sci. Lett., 1997. - v. 150 - p. 1.
4. Amelin, Y., et al. Lead isotope ages of chondrules and calcium-aluminum-rich inclusions, // Science, 2002. - v. 297 - p. 1678.
5. Angor, C. B., Canup, R. M., Levison, H. On the character and consequences of large impacts in the late stage of terrestrial planet formation, // Icarus, 1999. - v. 142 - p. 219.
6. Avice, G., Marty, B. The iodine-plutonium-xenon age of the Moon-Earth system revisited, // Phil. Trans. Royal Soc. Lond., 2014. - v. A 372 - p. 219.
7. Ballentine, C. J., Holland, G. What CO$_2$ well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere, // Phil. Trans. Royal Soc. Math. Phys. and Engineering Sci., 2008. - v. 366 - p. 4183.
8. Benkert, J.-P., Baur, H., Signer, P., Wieler, R. He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes, // J. Geophys. Res., 1993. - v. 98 - p. 13147.
9. Bermingham, K. R., Walker, R. J. The ruthenium isotopic composition of the oceanic mantle, // Earth Planet. Sci. Lett., 2017. - v. 474 - p. 466.
10. Beyersdorf-Kuis, U., Ott, U. , Trieloff, M. Early cosmic ray irradiation of chondrules and prolonged accretion ofprimitive meteorites, // Earth Planet. Sci. Lett., 2015. - v. 423 - p. 13.
11. Bond, J. C., Lauretta, D. S., O'Brien, D. P. Making the Earth: Combining dynamics and chemistry in the Solar System, // Icarus, 2010. - v. 205 - p. 321.
12. Brandon, A. D., Walker, R. J., Puchtel, I. S. Platinum-osmium isotope evolution of the Earth's mantle: Constraints from chondrites and Os-rich alloys, // Geochim. Cosmochim. Acta, 2006. - v. 70 - p. 2093.
13. Bureau, H., Auzende, A.-L., Marocchi, M. Modern and past volcanic degassing of iodine, // Geoch. Cosmochim. Acta, 2016. - v. 173 - p. 114.
14. Burkhardt, C., et al. A nucleosynthetic origin for the earth's anomalous 142Nd composition, // Nature, 2016. - v. 537 - p. 194.
15. Busemann, H., Baur, H., Wieler, R. Primordial noble gas in ``phase Q'' in carbonaceous and ordinary chondrites studied by closed-system stepped etching, // Meteorit. Planet. Sci., 2000. - v. 35 - p. 949.
16. Caffee, M. W., Hudson, G. B., Velsko, C., Huss, G. R., Alexander. E. C. Jr., Chivas, A. R. Primordial noble gases from Earth's mantle: Identification of a primitive volatile component, // Science, 1999. - v. 285 - p. 2115.
17. Canup, R. M., Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth's formation, // Nature, 2001. - v. 412 - p. 708.
18. Caracausi, A., Avice, G., Burnard, P. G., Fuery, E., Marty, B. Chondritic xenon in the Earth's mantle, // Nature, 2016. - v. 533 - p. 82.
19. Clay, P. L., et al. Halogens in chondritic meteorites and terrestrial accretion, // Nature, 2017. - v. 551 - p. 614.
20. Crabb, J., Anders, E. Noble gases in E-chondrites, // Geochim. Cosmochim. Acta, 1981. - v. 45 - p. 2443.
21. Dauphas, N., Morbidelli, A. Geochemical and planetary dynamical views on the origin of Earth' atmosphere and oceans, // Treatise Geochem., 2014. - v. 6 - p. 1.
22. Dauphas, N., et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk, // Earth Planet. Sci. Lett., 2014. - v. 407 - p. 96.
23. Eugster, O., Lorenzetti, S., Krähenbühl, U., Marti, K. Comparison of cosmic-ray exposure ages and trapped noble gases in chondrule and matrix samples of ordinary, enstatite, and carbonaceous chondrites, // Meteoritics Planet. Sci., 2007. - v. 42 - p. 1351.
24. Fischer-Gödde, M., Kleine, T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer, // Nature, 2017. - v. 541 - p. 525.
25. Graham, D. W. Noble gas isotope geochemistry of mid-ocean ridges and ocean island basalts: characterization of mantle source reservoirs // Noble gases in geochemistry and cosmochemistry (Eds. Porcelli D., Ballentine C. J., and Wieler R.) - Washington: Mineral. Soc. Amer.., 2002. - p. 247.
26. Griffin, W. L., et al. The world turns over: Hadean-Archean crust-mantle evolution, // Lithos, 2014. - v. 189 - p. 2.
27. Heber, V. S., et al. The Genesis solar wind concentrator target: mass fractionation characterised by neon isotopes, // Space Sci. Rev., 2007. - v. 130 - p. 309.
28. Heber, V. S., Baur, H., McKeegan, K., Neugebauer, M., Reisenfeld, D., Wieler, R., Wiens, R. Isotopic fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis Mission, // Astrophys. J., 2012. - v. 759 - p. 121.
29. Holland, G., Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle, // Nature, 2006. - v. 441 - p. 186.
30. Holland, G., Cassidy, M., Ballentine, C. Meteorite Kr in earth's mantle suggests a late accretionary source for the atmosphere, // Science, 2009. - v. 326 - p. 1522.
31. Holzheid, A., Sylvester, P., O'Neill, H. S., Rubie, D. C., Palme, H. Evidence for a late chondritic veneer in the Earth' mantle from high-pressure partitioning of palladium and platinum, // Nature, 2000. - v. 406 - p. 396.
32. Honda, M., Patterson, D. B. Systematic elemental fractionation of mantle-derived helium, neon and argon in mid-oceanic ridge glasses, // Geochim. Cosmochim. Acta, 1999. - v. 63 - p. 2863.
33. Hudson, G. B., Kennedy, B. M. , Podosek, F. A. , Hohenberg, C. M. The early solar system abundance of $^{244}$Pu as inferred from the St. Severin chondrite, // Proc. Lunar Planet. Sci. Conf., 1989. - v. 19 - p. 547.
34. Jackson, M. G., et al. Evidence for the survival of the oldest terrestrial mantle reservoir, // Nature, 2010. - v. 466 - p. 853.
35. Jackson, M. G., et al. Peridotite xenoliths from the Polynesian Austral and Samoa hotspots: Implications for the destruction of ancient $^{187}$Os and $^{142}$Nd isotopic domains and the preservation of Hadean $^{129}$Xe in the modern convecting mantle, // Geochim. Cosmochim. Acta, 2016. - v. 185 - p. 21.
36. Jacobsen, S. B. The Hf-W isotopic system and the origin of the Earth and Moon, // Ann. Rev. Earth Planet. Sci., 2005. - v. 33 - p. 18.1.
37. Johnson, T. E., et al. Delamination and re-cycling of Archaean crust caused by gravitational instabilities, // Nat. Geosci., 2014. - v. 7 - p. 47.
38. Kleine, T., Munker, C., Mezger, K., Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry, // Nature, 2002. - v. 418 - p. 952.
39. Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z., Halliday, A. N. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets, // Geochim. Cosmochim. Acta, 2009. - v. 73 - p. 5150.
40. Kostitsyn, Yu. A. Sm-Nd and Lu-Hf isotope systematics of the Earth: do they respond to chondrites?, // Petrology, 2004. - v. 12 - p. 451.
41. Kramers, J. D. Reconciling siderophile element data in the Earth and Moon, W isotopes and the upper lunar age limit in a simple model of homogeneous accretion, // Chem. Geol., 1998. - v. 145 - p. 461.
42. Kramers, J. D. Volatile element abundance patterns and the early liquid water ocean on Earth, // Precambrian Res., 2003. - v. 126 - p. 379.
43. Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B., Mattsson, T. R. Impact vaporization of planetesimal cores in the late stages of planet formation, // Nature Geoscience, 2015. - p. 1.
44. Krot, A. N., et al. Origin and chronology of chondritic components: A review, // Geochim. Cosmochim. Acta, 2009. - v. 73 - p. 4963.
45. Lecuyer, C., Gillet, P., Robert, F. The hydrogen isotope composition of seawater and the global water cycle, // Chem. Geol., 1998. - v. 145 - p. 249.
46. Lux, G. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with implications to natural samples, // Geochim. Cosmochim. Acta, 1987. - v. 51 - p. 1549.
47. Maier, W. D., et al. Progressive mixing of meteoritic veneer into the early Earth's deep mantle, // Nature, 2009. - v. 460 - p. 620.
48. Marchi, S., et al. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts, // Nature, 2014. - v. 511 - p. 578.
49. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth, // Earth Planet. Sci. Lett., 2012. - v. 313-314 - p. 56.
50. Marty, B., Avice, G., Sano, Y., Altwegg, K., Balsiger, H., Hässig, M., Morbidelli, A., Mousis, O., Rubin, M. Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission, // Earth Planet. Sci. Lett., 2016. - v. 441 - p. 91.
51. Marty, B., et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere, // Science, 2017. - v. 356 - p. 1069.
52. Meisel, T., Walker, R. J., Irving, A. J., Lorand, J.-P. Osmium isotopic compositions of mantle xenoltiths: A global perspective, // Geochim. Cosmochim. Acta, 2001. - v. 65 - p. 1311.
53. Mojzsis, S. J., Harrison, T. M., Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago, // Nature, 2001. - v. 409 - p. 178.
54. Morbidelli, A., et al. Building terrestrial planets, // Ann. Rev. Earth Planet. Sci., 2012. - v. 40 - p. 251.
55. Moreira, M., Charnoz, S. The origin of the neon isotopes in chondrites and on Earth, // Earth Planet. Sci. Lett., 2016. - v. 433 - p. 249.
56. Moreira, M., Kunz, J., Allegre, C. Rare gas systematics in popping rock: Isotopic and elemental compositions in the upper mantle, // Science, 1998. - v. 279 - p. 1178.
57. O'Neill, C., Debaille, C. V. The evolution of Hadean-Eoarchaean geodynamics, // Earth Planet. Sci. Lett., 2014. - v. 406 - p. 49.
58. Palma, R. L., et al. Irradiation records in regolith materials, II: Solar wind and solar energetic particle components in helium, neon, and argon extracted from single lunar mineral grains and from the Kapoeta howardite by stepwise pulse heating, // Geochim. Cosmochim. Acta, 2002. - v. 66 - p. 2929.
59. Parai, R., Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: Constraints from fission Xe isotopes in Southwest Indian Ridge basalts, // G Cubed, 2015. - p. 719.
60. Pedroni, A., Begemann, F. On unfractionated solar gasses in the H3-6 meteorite Acfer 111, // Meteoritics, 1994. - v. 29 - p. 632.
61. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles, // Icarus, 1991. - v. 92 - p. 2.
62. Pepin, R. O., Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth, // Earth Planet. Sci. Lett., 2006. - v. 250 - p. 470.
63. Peron, S., Moreira, M., Putlitz, B., Kurz, M. D. Solar wind implantation supplied light volatiles during the first stage of earth accretion, // Geochem. Persp. Let., 2017. - v. 3 - p. 151.
64. Phinney, D., Tennyson, J., Frick, U. Xenon in CO$_2$ well gas revisited, // J. Geophys. Res., 1978. - v. 83 - p. 2313.
65. Puchtel, I. S., et al. Mixing times of the Archean mantle: evidence from 2.7 Ga komatiites - Paris: Goldschmidt Conference 2017., 2017.
66. Raymond, S. N., Schlichting, H., Hersant, F., Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets, // Icarus, 2013. - v. 226 - p. 671.
67. Righter, K., Drake, M. J. Metal-silicate equilibrium in the early Earth-New constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn, // Geochim. Cosmochim. Acta, 2000. - v. 64 - p. 3581.
68. Rivera-Valentin, E. G., Barr, A. C. Estimating the sizes of late veneer impactors from impact-induced mixing on Mercury // The Astrophys. J. Lett. - U.S.A: AAS DSP meeting 6 id.205.01., 2014. - p. 1.
69. Robert, F. The origin of water on Earth, // Science, 2001. - v. 293 - p. 1056.
70. Scherer, P., Schultz, L. Noble gas record, collisional history, and pairing of CV, CO, CK, and other carbonaceous chondrites, // Meteorit. Planet. Sci., 2000. - v. 35 - p. 145.
71. Schlichting, H. E., Warren, P. H., Yin, Q.-Z. The last stages of terrestrial planet formation: Dynamical friction and the late veneer, // Astrophys. J., 2012. - v. 752
72. Shuster, D. L., Farley, K. A. Diffusion kinetics of proton-induced $^{21}$Ne, $^3$He, and $^4$He in quartz, // Geochim. Cosmochim. Acta, 2005. - v. 69 - p. 2349.
73. Sleep, N. H. Hotspots and mantle plume: Some phenomenology, // J. Geophys. Res., 1990. - v. 95 - p. 6715.
74. Smith, S. P., Reynolds, J. H. Excess $^{129}$Xe in a terrestrial sample as measured in a pristine system, // Earth Planet. Sci. Lett., 1981. - v. 54 - p. 236.
75. Stevenson, D. J. Origin of the Moon - the collision hypothesis, // Ann. Rev. Earth Planet. Sci., 1987. - v. 15 - p. 271.
76. Tolstikhin, I. N., Marty, B. The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modeling, // Chem. Geol., 1998. - v. 147 - p. 27.
77. Tolstikhin, I., Hofmann, A. Early crust on top of the Earth's core, // Phys. Earth Planet. Inter., 2005. - v. 148 - p. 109.
78. Tolstikhin, I. N., Kramers, J. D. The Evolution of Matter (from the Big Bang to the present-day Earth) - Cambridge: Cambridge University Press., 2008. - 521 pp.
79. Tolstikhin, I., Marty, B., Porcelli, D., Hofmann, A. Evolution of volatile species in the earth's mantle: A view from xenology, // Geochim. Cosmochim. Acta, 2014. - v. 136 - p. 229.
80. Trull, T. W., Kurz, M. D. Experimental measurements of He-3 and He-4 mobility in olivine and clinopyroxene at magmatic temperatures, // Geochim. Cosmochim. Acta, 1993. - v. 57 - p. 1313.
81. Tucker, J. M., Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases, // Earth Planet. Sci. Lett., 2014. - v. 393 - p. 254.
82. Van Hunen, J., Moyen, J.-F. Archean subduction: fact or fiction?, // Annu. Rev. Earth Planet. Sci., 2012. - v. 40 - p. 195.
83. Van Thienen, P., Van den Berg, A. P., Vlaar, N. J. Production and recycling of oceanic crust in the early Earth, // Tectonophysics, 2004. - v. 386 - p. 41.
84. Vityazev, A. V., Pechernikova, G. V., Safronov, V. S. Earth Planets: Origin and Early Evolution - Moscow: Nauka., 1990. - 296 pp.
85. Walker, R. J. Siderophile elements in tracing planetary formation and evolution, // Geochemical Perspectives, 2016. - v. 5 - p. 1.
86. Walker, R. J., Bermingham, K., Liu, J., Puchtel, I. S., Touboul, M., Worsham, E. A. In search of late-stage planetary building blocks, // Chem. Geol., 2015. - v. 411 - p. 125.
87. Wanke, H., Dreibus, G., Jagoutz, E. Mantle chemistry and Accretion History of the Earth // Archaean Geochemistry (Eds. A. Kroner, G. N. Hanson, and A. M. Goodwin) - Berlin: Springer-Verlag., 1984.
88. Weidenschilling, S. J. Formation of planetesimals and accretion of the terrestrial planets // From Dust to Terrestrial Planets (Eds. W. Benz, R. Kallenbach, and G. W. Lugmair) - Dordrecht: Kluwer Academic Publisher., 2000. - p. 295.
89. Wetherill, G. W. Formation of the earth, // Ann. Rev. Earth Planet. Sci., 1990. - v. 18 - p. 205.
90. Yatsevich, I., Honda, M. Production of nucleogenic neon in the Earth from natural radioactive decay, // J. Geophys. Res., 1997. - v. 102 - p. 10,291.
91. Zharkov, V. N. Internal Structure of the Earth and Planets - Moscow: Nauka., 1983. - 416 pp.