ASSESSMENT OF MEAN WORLD OCEAN MERIDIONAL HEAT TRANSPORT CHARACTERISTICS BY A HIGH-RESOLUTION MODEL
Аннотация и ключевые слова
Аннотация (русский):
Eddy-induced meridional heat transport (EMHT) distribution in the world ocean is calculated by means of the eddy-resolving model INMIO, with atmospheric and radiative forcing defined by the CORE-II protocol data in 1978--1982. The EMHT is defined as the deviation of the total MHT value from the one calculated on the basis of 3-month running means of temperature and velocity. Local and zonally-integrated distributions of the EMHT in the global ocean and its basins are considered. We show that in some locations the eddy component makes a significant contribution to the total MHT, particularly in the Southern Ocean, near the equator, in western boundary currents, and in the regions of current confluences. Several qualitative differences are found between our results and other model-based and observation-based assessments. The eddy heat transport is shown to have sometimes a positive component along the horizontal temperature gradient direction, which makes it ill-founded to parameterize the EMHT by the common heat diffusion law with a positive diffusion coefficient.

Ключевые слова:
World ocean, ocean general circulation model, high-resolution model, mesoscale eddies, eddy meridional heat transport
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Antonov, J. I., Seidov, D., Boyer, T. P., et al. World ocean Atlas 2009, Volume 2, Salinity. S. Levitus (Ed.), NOAA Atlas NESDIS 69 - Washington, D.C: U.S. Government Printing Office., 2010. - 184 pp.

2. Beckmann, A., Willebrand, J., et al. Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean, // J. Phys. Oceanogr., 1994. - v. 24 - p. 326.

3. Bryan, F. O., Hecht, M. W., Smith, R. D. Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system, // Ocean Modelling, 2007. - v. 16 - p. 141.

4. Bryan, K. A numerical method for the study of the circulation of the world ocean, // J. Comp. Phys., 1969. - v. 4 - no. 3 - p. 347.

5. Bryan, K. The role of mesoscale eddies in the poleward transport of heat by the oceans: A review, // Physica D, 1996. - v. 98 - p. 249.

6. Bryden, H. L., Brady, E. C. Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean, // J. Mar. Res., 1989. - v. 47 - p. 55.

7. Diansky, N. A., Volodin, E. M. Simulation of present-day climate with a coupled atmosphere-ocean general circulation model, // Izvestiya, Atmospheric and Oceanic Physics, 2002. - v. 38 - no. 6 - p. 732.

8. Diansky, N. A., Bagno, A. V., Zalesny, V. B. Sigma model of global ocean circulation and its sensitivity to variations in wind stress, // Izvestiya, Atmospheric and Oceanic Physics, 2002. - v. 38 - no. 4 - p. 477.

9. Dong, C., McWilliams, J. C., Liu, Yu , Chen, D. Global heat and salt transports by eddy movement, // Nat. Commun., 2014. - v. 5 - p. 477.

10. Flierl, G., Mcwilliams, J. C. Sampling requirements for measuring moments of eddy variability, // J. Mar. Res., 1977. - v. 35 - p. 797.

11. Ganachaud, A., Wunsch, C. Large-scale ocean heat and freshwater transports during theworld ocean Circulation Experiment, // J. Clim., 2003. - v. 16 - p. 696.

12. Gill, A. E. Atmosphere-Ocean Dynamics - Moscow: Academic Press., 1982. - 662 pp.

13. Griffies, S. M. Some Ocean Model Fundamentals // Ocean Weather Forecasting, Chassignet E. P., Verron J. (eds.) - Dordrecht: Springer., 2006. - p. 19.

14. Griffies, S. M., et al. Coordinated ocean-ice reference experiments (COREs), // Ocean Modelling, 2009. - v. 26 - no. 1-2 - p. 1.

15. Griffies, S. M., et al. Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean-sea ice Reference Experiments (COREs). WCRP Report No. 21/2012 - Southampton: International CLIVAR Project Office., 2012. - 23 pp.

16. Griffies, S. M., et al. Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models, // J. Climate, 2015. - v. 28 - p. 952.

17. Gulev, S., Barnier, B. , Knochel, H. , Molines, J. , Cottet, M. Water mass transformation in the North Atlantic and its impact on the meridional circulation: insights from an ocean model forced by NCEP-NCAR reanalysis surface fluxes, // J. Clim., 2003. - v. 16 - no. 19 - p. 3085.

18. Gusev, A. V., Diansky, N. A. Numerical simulation of the world ocean circulation and its climatic variability for 1948-2007 using the INMOM, // Izvestiya, Atmospheric and Oceanic Physics, 2014. - v. 50 - no. 1 - p. 1.

19. Hall, M. M., Bryden, H. L. Direct estimates and mechanisms of ocean heat transport, // Deep Sea Research Part A. Oceanographic Research Papers, 1982. - v. 29 - no. 3 - p. 339.

20. Hansen, D. V., Paul, C. A. Genesis and effects of long waves in the equatorial Pacific, // J. Geophys. Res., 1984. - v. 89 - p. 10,431.

21. Ibrayev, R. A. Model of enclosed and semi-enclosed sea hydrodynamics, // Russ. J. Numer. Anal. Math. Modelling, 2001. - v. 16 - no. 4 - p. 291.

22. Ibrayev, R. A., Khabeev, R. N. , Ushakov, K. V. Eddy-resolving $1/10\mbox{°}$ model of the world ocean, // Izvestiya, Atmospheric and Oceanic Physics, 2012. - v. 48 - no. 1 - p. 37.

23. Jayne, S. R., Marotzke, J. The oceanic eddy heat transport, // J. Phys. Oceanogr., 2002. - v. 32 - p. 3328.

24. Kalmykov, V. V., Ibrayev, R. A. The overlapping algorithm for solving shallow water equations on massively-parallel architectures with distributed memory, // Vestnik UGATU, 2013. - v. 17 - no. 5 (58) - p. 252.

25. Kalmykov, V. V., Ibrayev, R. A., Ushakov, K. V. Problems and challenges in creating a high-resolution Earth system model // Supercomputer Technologies in Science, Education and Industry - Moscow: MSU Publishers., 2014. - p. 14.

26. Lebedev, V. I. Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I, // USSR Computational Mathematics and Mathematical Physics, 1964a. - v. 4 - no. 3 - p. 69.

27. Lebedev, V. I. Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. II, // USSR Computational Mathematics and Mathematical Physics, 1964b. - v. 4 - no. 4 - p. 36.

28. Locarnini, R. A., Mishonov, A. V. , Antonov, J. I. , Boyer, T. P. , Garcia, H. E. , Baranova, O. K. , Zweng, M. M. , Johnson, D. R. World ocean Atlas 2009, Volume 1: Temperature. S. Levitus (Ed.), NOAA Atlas NESDIS 68 - Washington, D.C: U.S. Government Printing Office., 2010. - 184 pp.

29. Macdonald, A. M., Wunsch, C. An estimate of global ocean circulation and heat fluxes, // Nature, 1996. - v. 382 - p. 436.

30. Maltrud, M. E., McClean, J. L. An eddy resolving global $1/10\mbox{°}$ ocean simulation, // Ocean Model., 2005. - v. 8 - p. 31.

31. Marsh, R., de Cuevas, B. A., Coward, A. C., et al. Recent changes in the North Atlantic circulation simulated with eddy-permitting and eddy-resolving ocean models, // Ocean Model., 2009. - v. 28 - no. 4 - p. 226.

32. Marzocchi, A., et al. The North Atlantic subpolar circulation in an eddy-resolving global ocean model, // J. Marine Sys., 2015. - v. 142 - p. 126.

33. Meijers, A. J., Bindoff, N. L., Roberts, J. L. On the Total, Mean, and Eddy Heat and Freshwater Transports in the Southern Hemisphere of a $1/s\mbox{°} \times 1/s\mbox{°}$ Global Ocean Model, // J. Phys. Oceanogr., 2007. - v. 37 - p. 277.

34. Mesinger, F., Arakawa, A. Numerical Methods Used in Atmospheric Models, GARP Publ. Series , V. I - Geneva: WMO/ISCU Joint Org. Committee., 1976. - 64 pp.

35. Morrison, A. K., Saenko, O. A., Hogg, A. M., et al. The role of vertical eddy flux in southern ocean heat uptake, // Geophys. Res. Lett., 2013. - v. 40 - p. 5445.

36. Munk, W. H., Anderson, E. R. Note on the theory of the thermocline, // J. Mar. Res., 1948. - v. 7 - p. 276.

37. Murray, R. J. Explicit generation of orthogonal grids for ocean models, // J. Comp. Phys., 1996. - v. 126 - no. 2 - p. 251.

38. Polonsky, A. B., Krasheninnikova, S. B. Variability of the Currents' Vertical Structure in the Western Subtropical Atlantic and Meridian Heat Transport, // Physical Oceanography, 2015. - v. 3 - p. 35.

39. Qiu, B., Chen, S. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements, // J. Phys. Oceanogr., 2005. - v. 35 - p. 458.

40. Roemmich, D., Gilson, J. Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability?, // J. Phys. Oceanogr., 2001. - v. 31 - p. 675.

41. Sarkisyan, A. S., Sündermann, J. E. Modelling Ocean Climate Variability - Dordrecht, Netherlands: Springer., 2009. - 374 pp.

42. Sarkisyan, A. S., Nikitin, O. P., Lebedev, K. V. Physical characteristics of the Gulf Stream as an indicator of the quality of large-scale circulation modeling, // Doklady Earth Sciences, 2016. - v. 471 - no. 2 - p. 1288.

43. Schrum, C., Backhaus, J. Sensitivity of atmosphere-ocean heat exchange and heat content in North Sea and Baltic Sea. A comparative Assessment, // Tellus, 1999. - v. 51A - p. 526.

44. Smith, R. D., et al. Numerical simulation of the North Atlantic Ocean at 1/10°, // J. Phys. Oceanogr., 2000. - v. 30 - p. 1532.

45. Stammer, D. On eddy characteristics, eddy transports, and mean flow properties, // J. Phys. Oceanogr., 1998. - v. 28 - p. 727.

46. Stammer, D., Wunsch, C., Ueyoshi, K. Temporal changes in ocean eddy transports, // J. Phys. Oceanogr., 2006. - v. 36 - p. 543.

47. Ushakov, K.V., Ibrayev, R.A., Kalmykov, V.V. Simulation of the world ocean climate with a massively parallel numerical model, // Izvestiya, Atmospheric and Oceanic Physics, 2015. - v. 51 - no. 4 - p. 362.

48. Ushakov, K. V., Grankina, T. B., Ibrayev, R. A. Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment, // Izvestiya, Atmospheric and Oceanic Physics, 2016. - v. 52 - no. 4 - p. 365.

49. Ushakov, K. V., Ibrayev, R. A. Simulation of the global ocean thermohaline circulation with an eddy-resolving INMIO model configuration, // IOP Conf. Ser.: Earth Environ. Sci., 2017. - v. 96 - p. 365.

50. Volkov, D. L., Lee, T., Fu, L.-L. Eddy-induced meridional heat transport in the ocean, // Geophys. Res. Lett., 2008. - v. 35 - p. 365.

51. Volkov, D. L., Fu, L.-L., Lee, T. Mechanisms of the meridional heat transport in the Southern Ocean, // Ocean Dynamics, 2010. - v. 60 - p. 791.

52. Volodin, E. M., et al. Reproduction of world ocean circulation by the CORE-II scenario with the models INMOM and INMIO, // Izvestiya, Atmospheric and Oceanic Physics, 2018. - v. 54 - no. 1 - p. 86.

53. Williams, S., Petersen, M., Hecht, M., Maltrud, M., et al. Interface Exchange as an Indicator for Eddy Heat Transport, // Computer Graphics Forum, 2012. - v. 31 - p. 1125.

54. Wunsch, C. Where do ocean eddy heat fluxes matter?, // J. Geophys. Res., 1999. - v. 104 - p. 13,235.

55. Yim, B. Y., Noh, Y., Qiu, B., You, S. H., Yoon, J. H. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM, // J. Phys. Oceanogr., 2010. - v. 40 - p. 340.

56. Zalezak, S. T. Fully multidimensional flux-corrected transport algorithm for fluids, // J. Comput. Phys., 1979. - v. 31 - p. 335.

Войти или Создать
* Забыли пароль?