METALLOGENY OF LITHIUM THROUGH GEOLOGICAL TIME
Аннотация и ключевые слова
Аннотация (русский):
The intensity of lithium accumulation through geological time has been analyzed. For this purpose we used the data on mineral deposits which have already exploited or potentially are of economic interest and which contain at least $0.1 \times 10^6$ tons of Li$_2$O. Their formation was pronounced discrete and took place at various geological epochs from the Later Mesoarchean to Holocene. Each known supercontinent cycle differs in one way or another in the metallogeny of lithium. In the earliest cycles, Kenoran, Columbian, and Rodinian, exclusively pegmatite lithium deposits were generated. Moreover, this type is the only through one over the geological history, because such objects are also known in the Pangean and Amasian cycles. However, both the maximal number of such pegmatites and highest lithium grades are known for the oldest Kenoran cycle. This allows us to suppose that the Archean conditions were particularly favorable for lithium-bearing pegmatites. The lithium potential of the Pangean cycle also is mainly formed by pegmatites, except small part of resources related to lithium-fluorine Li-F rare-metal granites. The current Amasian cycle is far from the finish and the most diverse in types of lithium deposits. Pegmatites and Li-F granites in total contain only a tenth of the cycle's resources. Known in the Miocene-Quaternary only, the epithermal stratabound deposits and especially lithium-bearing brines in salars play a main role in the cycle. In spite of the lowest lithium contents, exactly the last type gives the maximal part in total resources, as well in lithium extraction, due to the relative simplicity and efficiency of used extraction technologies.

Ключевые слова:
Metallogeny, lithium deposits, geological history, supercontinent cycle
Список литературы

1. Aiken, S. R., Gowans, R., Hawton, K. E. NI 43-101 Technical report on the preliminary economic assessment of lithium hydroxide production Separation Rapids Lithium Project, Kenora, Ontario - Toronto: Micon International Ltd.., 2016. - 278 pp.

2. Bogatikov, O. A., Kovalenko, V. I., Sharkov, E. V. Magmatism, tectonics, and geodynamics of the Earth: spatiotemporal relationships - Moscow: Nauka., 2010. - 606 pp.

3. Bradley, D. C. Passive margins through earth history, // Earth-Science Reviews, 2008. - v. 91 - p. 1.

4. Christmann, P., Gloaguen, E., Labb#xE9;, J.-F., et al. Global Lithium Resources and Sustainability Issues, Chapter 1, Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling, A. Chagnes ampersand J. #x81;wiatowska Eds. - Amsterdam: Elsevier., 2015. - 1#x2013;40 pp.

5. Condie, K. C. Preservation and recycling of crust during accretionary and collisional phases of Proterozoic orogens: a bumpy road from Nuna to Rodinia, // Geosciences, 2013. - v. 3 - p. 240.

6. Dewaele, S., Hulsbosch, N., Cryns, Y., et al. Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of #x81;nono-Kitotolo Katanga, Democratic Republic of Congo, // Ore Geology Reviews, 2015. - v. 72 - p. 373.

7. Duarte, J. C., Schellart, W. P., Rosas, F. M. The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation, // Geological Magazine, 2018. - v. 155 - p. 45.

8. Evans, K. R. Lithium, Chapter 10, Critical Metals Handbook. Hoboken, Gunn G. ed. - New Jersey, USA: Wiley-Blackwell., 2014. - 230#x2013;260 pp.

9. Grew, E. S., Bosi, F., Gunter, M. E., et al. Fluor-elbaite, lepidolite and Ta-Nb oxides from a pegmatite of the 3000 Ma Sinceni pluton, Swaziland: Evidence for lithium-cesium-tantalum LCT pegmatites in the Mesoarchean, // European J. Mineralogy, 2018. - v. 30 - no. 2 - p. 25.

10. Gumsley, A. P., Chamberlain, K. R., Bleeker, W., et al. Timing and tempo of the Great Oxidation Event, // PNAS, 2017. - v. 114 - no. 8 - p. 1811.

11. Harris, P. D., Robb, L. J., Tomkinson, M. J. The nature and structural setting of rare-element pegmatites along the nothern flank of the Barberton greenstone belt, South Africa, // South Afr. J. Geology, 1995. - v. 98 - no. 1 - p. 82.

12. Kesler, S. E., Gruber, P. W., Medina, P. A., et al. Global lithium resources: relative importance of pegmatite, brine and other deposits, // Ore Geology Reviews, 2012. - v. 48 - p. 55.

13. Kostitsyn, Yu. A. Sources of peraluminous rare-metal granites: a review of Rb-Sr and Sm-Nd isotopic data // Ore-Bearing Granites of Russia and Adjusting Countries, A. A. Kremenetskiy et al. Eds. - Moscow: IMGRE., 2000. - p. 143.

14. Labrosse, S., Jaupart, C. Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics, // Earth Planet. Sci. Letters, 2007. - v. 260 - p. 465.

15. Li, J., Zou, T., Liu, X., et al. The metallogenetic regularities of lithium deposits in China, // Acta Geologica Sinica, 2015. - v. 89 - no. 2 - p. 652.

16. Linde, T. P., Stavrov, O. D., Yushko, N. A., et al. Lithium in Russia: state and perspectives for mining and further growth of the resource base, // Mineral'noe syr'yo. Seriya Geologo-Economicheskaya, 2000. - no. 6 - p. 652.

17. London, D. Experimental phase equilibria in the system LiAlSiO$_4$#x2013;SiO$_2$#x2013;H$_2$O: A petrogenetic grid for lithium-rich pegmatites, // Amer. Mineralogist, 1984. - v. 69 - p. 995.

18. Martin, Y. J. The Bikita tifield, // Southern Rodesia Geological Survey Bulletin, 1964. - v. 58 - p. 114.

19. McCauley, A., Bradley, D. C. The global age distribution of granitic pegmatites, // Canadian Mineralogist, 2014. - v. 52 - p. 183.

20. Meshrama, P., Pandey, B. D., Mankhand, T. R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, // Hydrometallurgy, 2014. - v. 150 - p. 192.

21. Mohr, S. H., Mudd, G. M., Giurco, D. Lithium resources and production: critical assessment and global projections, // Minerals, 2012. - v. 2 - p. 65.

22. Partington, G. A., McNaughton, N. J., Williams, I. S. A review of the geology, mineralization and geochronology of the Greenbushes pegmatite, Western Australia, // Econ. Geology, 1995. - v. 90 - p. 616.

23. Peng, Q. M., Palmer, M. R. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin provinces, northeast China, // Econ. Geology, 2002. - v. 97 - p. 93.

24. Rogers, J. J. W., Santosh, M. Continents and Supercontinents - Oxford: Oxford University Press., 2004. - 304 pp.

25. Romanyuk, T. V., Tkachev, A. V. Geodynamic Scenario of Forming of the Miocene-Quartern. World-Class Boron-Lithium-Bearing Provinces - Moscow: IFZ RAS and GGM RAS, ``Svetoch-plyus''., 2010. - 304 pp.

26. Rundqvist, D. V., Tkachev, A. V., Cherkasov, S. V., et al. Database and metallogenic map of large and superlarge world deposits: principles of compilation and preliminary analysis of results // Large and superlarge ore deposits: Regularities in allocation and conditions of formation - Moscow: IGEM RAN., 2004. - p. 391.

27. Rundqvist, D. V., Tkachev, A. V., Cherkasov, S. V., et al. Large and superlarge ore deposits. V. 1. Global regularities in localization - Moscow: IGEM RAN., 2006. - 390 pp.

28. Solodov, N. A. Acid rare-metal granites // Mineral Deposits of Lithophile Rare Elements - Moscow: Nedra., 1980. - p. 62.

29. Stilling, A., Cerny, P., Vanstone, P. J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and the petrogenetic significance, // Canadian Mineralogist, 2006. - v. 44 - p. 599.

30. Swanson, S. E. Relation of nucleation and crystal-growth to the development of granitic textures, // American Mineralogist, 1977. - v. 62 - p. 966.

31. Tkachev, A. V. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time // Granite-Related Ore Systems, A. N. Sial et al. Eds., Special Publications, 350 - London: Geological Society., 2011. - p. 7.

32. Tkachev, A. V., Romanyuk, T. V. World's largest Miocene-Quoternary boron-lithium ore provinces. Paper 3. Geodynamic scenario of origin, // Bull. MOIP, Seriya Geologicheskaya, 2010. - v. 85 - no. 1 - p. 27.

33. Tkachev, A. V., Rundqvist, D. V. Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity, // Geology of Ore Deposits, 2016a. - v. 58 - no. 4 - p. 263.

34. Tkachev, A. V., Rundqvist, D. V. Influence of supercontinent cyclicity on global metallogenic processes: Main tendencies, // Doklady Earth Sciences, 2016b. - v. 469 - no. 2 - p. 797.

35. Tkachev, A. V. Origin of the pegmatite zoning, // Otechestvennaya Geologiya, 1994. - no. 7 - p. 52.

36. Tkachev, A. V., Bulov, S. V., Rundqvist, D. V., et al. WEB-GIS ``World's largest mineral deposits'', // Geoinformatika, 2015. - no. 1 - p. 47.

37. Trumbull, R. B. A petrological and Rb/Sr isotopic study of an early Archean fertile granite-pegmatite system: the Sinceni pluton in Swaziland, // Precambrian Res., 1993. - v. 61 - p. 89.

Войти или Создать
* Забыли пароль?