ANALYSIS OF SOLAR, INTERPLANETARY, AND GEOMAGNETIC PARAMETERS DURING SOLAR CYCLES 22, 23, AND 24
Аннотация и ключевые слова
Аннотация (русский):
We have analyzed the trend of solar, interplanetary, and geomagnetic SIG parameters during solar cycles 22, 23, and 24. The sunspot numbers $R$, solar flux index $F_10.7$ and Lyman Alpha $L$ indicate periodic trend during each solar cycle. In solar cycle 24 sunspot numbers $R$, $F_10.7$, and $L$ show periodic nature, but their peak is low. However, polar cap index PCI has maximum value in the latest solar cycle. We found a positive correlation between PCI and polar cap voltage PCV. This means, during this period, there is a big difference between the maximum and minimum electronic convection potential in the ionosphere. In the solar cycle 24, Sun polar fields had low magnitude compared to cycle 22 and 23. This low solar polar field corresponds to the highest difference between electronic convection potentials. The same low solar polar field also corresponds to low values in $R$, $F_10.7$, and $L$. Through continuous wavelet transform CWT, we found that solar flux, sunspot number, Lyman Alpha all have highest spectral variability from 0 to 100 months. Sunspot number, Lyman Alpha, $F_10.7$ all have a continuous spectral energy of medium and low magnitude. We suggest that these unique condition of SIG parameters have originated from solar activity.

Ключевые слова:
Sunspot, solar flux, cross-correlation, wavelet analysis
Список литературы

1. Adhikari, B., Dahal, S., Chapagain, N. P. Study of field-aligned current FAC, // Earth and Space Science, 2017. - v. 4 - no. 5 - p. 257.

2. Adhikari, B., Sapkota, N., Bhattarai, B., et al. Study of interplanetary parameters, polar cap potential, and polar cap index during quiet event and high intensity long duration continuous $AE$ activities HILDCAAs, // Russian Journal of Earth Sciences, 2018. - v. 18 - no. 1 - p. 257.

3. Basu, S. The peculiar solar cycle 24 #x2013; where do we stand?, // Journal of Physics: Conference Series, IOP Publishing, 2013. - v. 440 - no. 1 - p. 257.

4. Berger, A. Milankovitch theory and climate, // Reviews of Geophysics, 1988. - v. 26 - no. 4 - p. 624.

5. Caprioli, D., Amato, E., Blasi, P. The contribution of supernova remnants to the galactic cosmic ray spectrum, // Astroparticle Phys., 2010. - v. 33 - p. 160.

6. Chattopadhyay, G., Chattopadhyay, S. Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network, // Eur. Phys. J. Plus, 2012. - v. 127 - p. 1.

7. Clilverd, M. A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M. J. Predicting solar cycle 24 and beyond, // Space Weather, 2006. - v. 4 - no. 9 - p. 1.

8. Daubechies, I. Ten Lectures on Wavelets // CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 - Philadelphia, PA: SIAM., 1992. - p. 17.

9. De Jager, C. Solar forcing of climate. 1: Solar variability, // Space Science Reviews, 2005. - v. 120 - no. 3#x2013;4 - p. 197.

10. De Jager, C., Duhau, S. Forecasting the parameters of sunspot cycle 24 and beyond, // Journal of Atmospheric and Solar-Terrestrial Physics, 2009. - v. 71 - no. 2 - p. 239.

11. Domingues, M. O., Mendes, O. J., Mendes, A. C. On wavelet techniques in atmospheric sciences, // Advances in Space Research, 2005. - v. 35 - p. 831.

12. Engels, S., van Geel, B. The effects of changing solar activity on climate: contributions from palaeoclimatological studies, // Journal of Space Weather and Space Climate, 2012. - v. 2 - p. 831.

13. Eddy, J. A. The Maunder Minimum, // Science, 1976. - v. 192 - p. 1189.

14. Eddy, J. A. The Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System - Washington, DC: Government Printing Office., 2009. - 20402-0001 pp.

15. Eddy, J. A. Climate and the changing sun, // Climatic Change, 1976. - v. 1 - no. 2 - p. 173.

16. Feminella, F., Storini, M. Large-scale dynamical phenomena during solar activity cycles, // Astronomy and Astrophysics, 1997. - v. 322 - p. 311.

17. Feulner, G., Rahmstorf, S. On the effect of a new grand minimum of solar activity on the future climate on Earth, // Geophysical Research Letters, 2010. - v. 37 - no. 5 - p. 1.

18. Foukal, P., Fr#xF6;hlich, C., Spruit, H., Wigley, T. M. L. Variations in solar luminosity and their effect on the Earth's climate, // Nature, 2006. - v. 443 - no. 7108 - p. 1.

19. Fr#xF6;hlich, C. Solar irradiance variability since 1978 // Solar Variability and Planetary Climates - New York, NY: Springer., 2006. - p. 53.

20. Gopalswamy, N., Shimojo, M., Lu, W., et al. Prominence eruptions and coronal mass ejection: a statistical study using microwave observations, // Astrophysical Journal, 2003. - v. 586 - no. 1 - p. 53.

21. Gray, L. J., Beer, J., Geller, M., et al. Solar influences on climate, // Reviews of Geophysics, 2010. - v. 48 - no. 4 - p. 24.

22. Grossmann, A., Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape, // SIAM Journal on Mathematical Analysis, 1983. - v. 15 - p. 723.

23. Hathaway, D. H. The solar cycle, // Living Reviews in Solar Physics, 2015. - v. 12 - no. 4 - p. 12.

24. Hathaway, D. H., Wilson, R. M., Reichmann, E. J. Group sunspot numbers: sunspot cycle characteristics, // Solar Physics, 2002. - v. 211 - no. 1#x2013;2 - p. 357.

25. Hayakawa, H., Iwahashi, K., Ebihara, Y., Tamazawa, H., et al. Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents, // Astrophys. J. Lett., 2017. - v. 850 - no. 2 - p. 2.

26. Herschel, W. Observations tending to investigate the nature of the Sun ..., // Philosophical Transactions of the Royal Society of London, 1801. - v. 91 - p. 265.

27. Jones, G. S., Lockwood, M., Stott, P. A. What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes?, // Journal of Geophysical Research: Atmospheres, 2012. - v. 117 - no. D5 - p. 4.

28. Jorgensen, T. S., Hansen, A. W. Comments on ''Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships'', // Journal of Atmospheric and Solar-Terrestrial Physics, 2000. - v. 62 - no. 1 - p. 73.

29. Katz, R. W. Use of cross correlations in the search for teleconnections, // J. Climatology, 1988. - v. 8 - p. 241.

30. Kilcik, A., Yurchyshyn, V. B., Ozguc, A., Rozelot, J. P. Solar cycle 24: Curious changes in the relative numbers of sunspot group types, // Astrophysical Journal Letters, 2014. - v. 794 - no. 1 - p. 241.

31. Klausner, V., Papa, A. R., Mendes, O., et al. Characteristics of solar diurnal variations: A case study based on records from the ground magnetic station at Vassouras, Brazil, // Journal of Atmospheric and Solar-Terrestrial Physics, 2013. - v. 92 - p. 124.

32. Lemaire, J. F., Singer, S. F. What happens when the geomagnetic field reverses? // Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, Geophysical Monograph Series - Washington, USA: AGU., 2012. - p. 355.

33. Lockwood, M., Rouillard, A. P., Finch, I. D. The rise and fall of open solar flux during the current grand solar maximum, // Astrophysical Journal, 2009. - v. 700 - no. 2 - p. 355.

34. Lockwood, M. Solar change and climate: an update in the light of the current exceptional solar minimum // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences - London: The Royal Society., 2009. - p. 355.

35. Lockwood, M. Solar influence on global and regional climates, // Surveys in Geophysics, 2012. - v. 33 - no. 3#x2013;4 - p. 503.

36. Mannucci, A. J., Tsurutani, B. T. , Abdu, M. A., et al. Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms, // Journal of Geophysical Research: Space Physics, 2008. - v. 113 - no. A3 - p. 8.

37. Meehl, G. A., Arblaster, J. M. , Branstator, G. , Van Loon, H. A coupled air#x2013;sea response mechanism to solar forcing in the Pacific region, // Journal of Climate, 2008. - v. 21 - no. 12 - p. 2883.

38. Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., van Loon, H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing, // Science, 2009. - v. 325 - no. 5944 - p. 1114.

39. Martin-Puertas, C., Matthes, K., Brauer, A., et al. Regional atmospheric circulation shifts induced by a grand solar minimum, // Nature Geoscience, 2012. - v. 5 - no. 6 - p. 1114.

40. Milankovitch, M. History of Radiation on the Earth and its Use for the Problem of the Ice Ages - Beogr: K. Serb. Akad.., 1941.

41. Morlet, J. Sampling theory and wave propagation // Acoustic Signal/Image Processing and Recognition, ed C. Chen - New York: Springer-Verlag., 1983. - p. 233.

42. Norton, A. A., Gallagher, J. C. Solar-Cycle Characteristics Examined in Separate Hemispheres: Phase, Gnevyshev Gap, and Length of Minimum, // Solar Physics, 2010. - v. 261 - no. 1 - p. 233.

43. Rahoma, U. A., Helal, R. Influence of Solar Cycle Variations on Solar Spectral Radiation, // Atmospheric and Climate Sciences, 2013. - v. 3 - no. 01 - p. 47.

44. Rathore, B. S., Kaushik, S. C. , Bhadoria, R. S. , Parashar, K. K., Gupta, D. C. Sunspots and geomagnetic storms during solar cycle-23, // Indian Journal of Physics, 2012. - v. 86 - no. 7 - p. 563.

45. Solheim, J. E., Stordahl, K., Humlum, O. The long sunspot cycle 23 predicts a significant temperature decrease in cycle 24, // Journal of Atmospheric and Solar-Terrestrial Physics, 2012. - v. 80 - p. 267.

46. Solomon, S., et al. eds. Climate Change 2007 // The Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change - Cambridge, UK: Cambridge Univ. Press., 2007. - p. 663.

47. Svensmark, H., Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage #x2013; a missing link in solar-climate relationships, // Journal of Atmospheric and Solar-Terrestrial Physics, 1997. - v. 59 - no. 11 - p. 1225.

48. Usoro, A. E. Some basic properties of cross-correlation functions of n-dimensional vector time series, // J. Stat. Econ. Methods, 2015. - v. 4 - no. 1 - p. 63.

49. Usoskin, I. G., Mursula, K. Long-term solar cycle evolution: review of recent developments, // Solar Physics, 2003. - v. 218 - no. 1#x2013;2 - p. 319.

50. Utomo, Y. S. Correlation analysis of solar constant, solar activity and cosmic ray, // Journal of Physics: Conference Series, IOP Publishing, 2017. - v. 817 - no. 1 - p. 319.

51. Vandenberghe, J., Coope, R., Kasse, K. Quantitative reconstructions of palaeoclimates during the last interglacial-glacial in western and central Europe: an introduction, // Journal of Quaternary Science, 1998. - v. 13 - no. 5 - p. 361.

52. Waldmeier, M. New features of the sunspot curve, // Astronomical Communications of the Swiss Federal Observatory Zurich, 1935. - v. 14 - p. 105.

53. Waldmeier, M. The zonal migration of the sunspots, // Astronomical Communications of the Swiss Federal Observatory Zurich, 1939. - v. 14 - p. 470.

54. Weber, W. Strong signature of the active Sun in 100 years of terrestrial insolation data, // Annalen der Physik, 2010. - v. 522 - no. 6 - p. 372.

55. Wilson, R. M. On the distribution of sunspot cycle periods, // Journal of Geophysical Research: Space Physics, 1987. - v. 92 - no. A9 - p. 10,101.

56. Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., Wanner, H. European spring and autumn temperature variability and change of extremes over the last half millennium, // Geophysical Research Letters, 2005. - v. 32 - no. 15 - p. 2.

57. Yeo, K. L., Krivova, N. A., Solanki, S. K. Solar cycle variation in solar irradiance, // Space Science Reviews, 2014. - v. 186 - no. 1#x2013;4 - p. 137.

Войти или Создать
* Забыли пароль?