The evolution and variability of Pleistocene glaciations is studied by comparison of the benthic #xA0;#x03B4;18O stack LR04 and the Orbital Climatic Diagram OrCD. Taking into account that the OrCD construction is based on a very simple principal, it corresponds well to the LR04 data within the last 1.25 Myr. It is shown that along with cases of good evidence for climatic influence of joint action by precession and obliquity variations there are some concrete situations in the paleoclimatic record of the last 1 Myr when this evidence is absent. A shift in the main periodicity of glacial cycles the Middle Pleistocene transition, MPT took place at around 1.239#xA0;Myr ago. Some possible mechanisms of the MPT are considered, and we argue that parametric resonance is the underlying mechanism responsible for the MPT phenomenon.
Paleoclimate, orbital theory, ice ages, Middle Pleistocene transition, insolation, marine isotope stages
1. Adh\'emar, Revolutions de la Mer: D luges P riodiques, 1842.
2. Ao, An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution, Quaternary Science Reviews, v. 30, 2011., doi:https://doi.org/10.1016/j.quascirev.2011.04.009
3. Bassinot, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth and Planetary Science Letters, v. 126, 1994., doi:https://doi.org/10.1016/0012-821X9490244-5
4. Berger, The 100-kyr ice-age cycle: internal oscillation or inclinational forcing?, Science, v. 88, 1999., doi:https://doi.org/10.1007/s005310050266
5. Berger, Modelling northern hemisphere ice volume over the last 3 Ma, Quaternary Science Reviews, v. 18, 1999., doi:https://doi.org/10.1016/S0277-37919800033-X
6. Berger, Insolation values for the climate of the last 10 million years, Quaternary Science Reviews, v. 10, 1991., doi:https://doi.org/10.1016/0277-37919190033-Q
7. Berger, Sensitivity of the LLN climate model to the astronomical and CO$_2$ forcings over the last 200~ky, Climate Dynamics, v. 14, 1998., doi:https://doi.org/10.1007/s003820050245
8. Bintanja, North American ice-sheet dynamics and the onset of 100,000-years glacial cycles, Nature, v. 454, 2008., doi:https://doi.org/10.1038/nature07158
9. Bol'shakov, On the depth of paleomagnetic record acquisition by deep-sea sediments with reference to the climatic-stratigraphic position of the Matuyama-Brunhes reversal, Izvestiya, Physics of the Solid Earth, v. 35, 1999.
10. Bol'shakov, A new concept of the astronomical theory of paleoclimate: One step forwards, after two steps backwards, Izvestiya, Physics of the Solid Earth, v. 37, 2001.
11. Bol'shakov, Modern climatic data for the Pleistocene: Implications for a new concept of the orbital theory of paleoclimate, Russian Journal of Earth Sciences, v. 5, no. 2, 2003a., doi:https://doi.org/10.2205/2003ES000116
12. Bol'shakov, The New Concept of the Orbital Theory of Paleoclimate, 2003b.
13. Bol'shakov, How long will the "precession epoch" last in terms of Pleistocene glacial cycles?, Russian Journal of Earth Sciences, v. 10, 2008., doi:https://doi.org/10.2205/2008ES000299
14. Bol'shakov, The problem of the 11th Marine Isotope Stage from the viewpoint of the new conception of the orbital theory of the paleoclimate, Oceanology, v. 50, 2010., doi:https://doi.org/10.1134/S0001437010020074
15. Bol'shakov, Study of parameters of the Middle Pleistocene transition by comparison of the oxygen-isotope record LR04 with the orbital-climatic diagram, Doklady Earth Sciences, v. 449, 2013., doi:https://doi.org/10.1134/S1028334X13030197
16. Bol'shakov, Applying a new method for timing paleoclimatic deep-sea sedimentary records, Oceanology, v. 45, 2005.
17. Bol'shakov, James Croll: a scientist ahead of his time, Polar Record, v. 48, 2012., doi:https://doi.org/10.1017/S0032247411000301
18. Broecker, Insolation changes, ice volumes, and the $\delta ^18$O record in deep-sea cores, Reviews of Geophysics and Space Physics, v. 8, 1970., doi:https://doi.org/10.1029/RG008i001p00169
19. Cande, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, Journal of Geophysical Research, v. 100, no. B4, 1995., doi:https://doi.org/10.1029/94JB03098
20. Clark, Origin of the middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, v. 13, 1998., doi:https://doi.org/10.1029/97PA02660
21. Clark, The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO$_2$, Quaternary Science Reviews, v. 25, 2006., doi:https://doi.org/10.1016/j.quascirev.2006.07.008
22. Cleaveland, Coherent obliquity band and heterogeneous precession band responses in Early Pleistocene tropical sea surface temperatures, Paleoceanography, v. 22, 2007., doi:https://doi.org/10.1029/2006PA001370
23. Croll, On the physical cause of the change of climate during geological epochs, Philosophical Magazine, v. 28, 1864.
24. Croll, On the change in the obliquity of the ecliptic, its influence on the climate of the polar regions and on the level of the sea, Philosophical Magazine, v. 33, 1867.
25. Croll, Climate and Time in their Geological Relations: A Theory of Secular Changes of the Earth's Climate, 1875.
26. de Garidel-Thoron, Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, v. 433, 2005., doi:https://doi.org/10.1038/nature03189
27. de Menocal, Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1, Earth and Planetary Science Letters, v. 99, 1990.
28. Elderfield, Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition, Science, v. 337, 2012., doi:https://doi.org/10.1126/science.1221294
29. Hagelberg, Linear and nonlinear couplings between orbital forcing and the marine $\delta ^18$O record during the Late Neogene, Paleoceanography, v. 6, 1991., doi:https://doi.org/10.1029/91PA02281
30. Hays, Variation in the Earth's orbit: Pacemaker of the ice ages, Science, v. 194, 1976., doi:https://doi.org/10.1126/science.194.4270.1121
31. Heckel, Sea-level curve for Pensylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America, Geology, v. 14, 1986., doi:https://doi.org/10.1130/0091-7613198614#x3C;330:SCFPEM#x3E;2.0.CO;2
32. Imbrie, Astronomical theory of the Pleistocene Ice Ages: A brief historical review, Icarus, v. 50, 1982., doi:https://doi.org/10.1016/0019-10358290132-4
33. Imbrie, Modeling the climatic response to orbital variations, Science, v. 207, 1980., doi:https://doi.org/10.1126/science.207.4434.943
34. Imbrie, Ice Ages: Solving the Mystery, 1986.
35. Imbrie, On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle, Paleoceanography, v. 8, 1993., doi:https://doi.org/10.1029/93PA02751
36. Imbrie, The orbital theory of Pleistocene climate: support from a revised chronology of the marine $\delta ^18$O record, A. L. Berger et al. Eds., Milankovitch and Climate, 1984.
37. Johnson, Brunhes-Matuyama magnetic reversal at 790,000 yr. B.P. by marine-astronomical correlations, Quaternary Research, v. 17, 1982., doi:https://doi.org/10.1016/0033-58948290055-2
38. Karner, Constructing a stacked benthic $\delta ^18$O record, Paleoceanography, v. 17, 2002., doi:https://doi.org/10.1029/2001PA000667
39. Kukla, Comment to: Pleistocene epoch and the evolution of man, Current Anthropology, v. 9, 1968.
40. Lawrence, Evolution of the eastern Tropical Pacific through Plio-Pleistocene glaciation, Science, v. 312, 2006., doi:https://doi.org/10.1126/science.1120395
41. Lawrence, North Atlantic climate evolution through the Plio-Pleistocene climate transitions, Earth and Planetary Science Letters, v. 300, 2010., doi:https://doi.org/10.1016/j.epsl.2010.10.013
42. Lisiecki, Links between eccentricity forcing and the 100,000-year glacial cycle, Nature Geosciences, v. 3, 2010., doi:https://doi.org/10.1038/ngeo828
43. Lisiecki, A Pliocene-Pleistocene stack of 57 globally distributed benthic $\delta ^18$O records, Paleoceanography, v. 20, 2005., doi:https://doi.org/10.1029/2004PA001071
44. Lisiecki, Plio-Pleistocene evolution: trends and transitions in glacial cycle dynamics, Quaternary Science Reviews, v. 26, 2007., doi:https://doi.org/10.1016/j.quascirev.2006.09.005
45. Liu, High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch, Nature, v. 427, 2004., doi:https://doi.org/10.1038/nature02338
46. Loutre, Does mean annual insolation have the potential to change the climate?, Earth and Planetary Science Letters, v. 221, 2004., doi:https://doi.org/10.1016/S0012-821X0400108-6
47. Milankovitch, Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen, 1930.
48. Milankovitch, Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem, 1941.
49. Muller, Glacial cycles and orbital inclination, Nature, v. 377, 1995., doi:https://doi.org/10.1038/377107b0
50. Pisias, The evolution of the Pleistocene climate: a time series approach, Earth and Planetary Science Letters, v. 52, 1981., doi:https://doi.org/10.1016/0012-821X8190197-7
51. Raymo, The 41-kyr world: Milankovitch's other unsolved mystery, Paleoceanography, v. 18, 2003., doi:https://doi.org/10.1029/2002PA000791
52. Ruddiman, Matuyama 41,000-year cycles: North Atlantic Ocean and Northern Hemisphere ice sheets, Earth and Planetary Science Letters, v. 80, 1986., doi:https://doi.org/10.1016/0012-821X8690024-5
53. Schneider, A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change, Earth and Planetary Science Letters, v. 111, 1992., doi:https://doi.org/10.1016/0012-821X9290192-X
54. Sergin, How the Earth glaciations originated, Priroda, v. 9, 1969.
55. Shackleton, New data on the evolution of Pliocene climatic stability, E. S.Vrba, G. H. Denton, T. C. Partridge, L.~H.~Burckle Eds., Paleoclimate and Evolution, with Emphasis on Human Origins, 1995.
56. Shackleton, An alternative astronomical calibration of the lower Pleistocene time scale based on ODP Site 677, Transactions of the Royal Society of Edinburgh, v. 81, 1990., doi:https://doi.org/10.1017/S0263593300020782
57. Shackleton, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale, Quaternary Research, v. 3, 1973., doi:https://doi.org/10.1016/0033-58947390052-5
58. Siddall, Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary, Quaternary Science Reviews, v. 29, 2010., doi:https://doi.org/10.1016/j.quascirev.2009.05.011
59. Spell, Revisions to the age of the Brunhes-Matuyama boundary and the Pleistocene geomagnetic polarity timescale, Geophysical Research Letters, v. 19, 1992., doi:https://doi.org/10.1029/92GL01125
60. Tauxe, Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic reminisce acquisition in marine carbonates and Asian loess sequences, Earth and Planetary Science Letters, v. 140, 1996., doi:https://doi.org/10.1016/0012-821X9600030-1
61. Thompson, A radiometric calibration of the SPECMAP timescale, Quaternary Science Reviews, v. 25, 2006., doi:https://doi.org/10.1016/j.quascirev.2006.02.007
62. Veevers, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequence in Euramerica, Geological Society of America Bulletin, v. 94, 1987., doi:https://doi.org/10.1130/0016-7606198798#x3C;475:LPGEIG#x3E;2.0.CO;2