The possibility of self-reversal of chemical remanent magnetization CRM is studied on synthetic samples of titanomagnetites Fe 3-x Ti x O 4, where x = 0.2, 0.4, and 0.6 that experienced multiphase oxidation in air at 500o C in the presence of the constant magnetic field H = 0.1nbsp;mT. The self-reversal was fixed in accordance with anomalous behavior of CRM curves of cooling in H = 0 and heating in H = 0. Complete self-reversal of CRM is discovered experimentally in samples of oxidized titanomagnetites with initial x = 0.6, while partial self-reversal is revealed in other titanomagnetite compositions. Superposition of a partial thermoremanent magnetization pTRM on CRM showed that heating curves of CRM+pTRM are also anomalous, but negative values of the total magnetization are not observed.
titanomagnetite, oxidation, magnetization, self-reversal.
1. Belov, Magnetic Transformations, 1959.
2. Bina, Geophys. J. Int., v. 138, 1999., doi:https://doi.org/10.1046/j.1365-246x.1999.00865.x
3. Bugaev, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 5, 1972.
4. Gapeev, Paleomagnetism and Magnetism of Rocks, Abstracts of reports, 1996.
5. Gapeev, Paleomagnetism and Magnetism of Rocks: Theory, Practice, and Experiment, Abstracts of Reports, 1997.
6. Gapeev, Paleomagnetism and Magnetism of Rocks: Theory, Practice, and Experiment, Abstracts of Reports, 1998.
7. Gapeev, Paleomagnetism and Magnetism of Rocks: Theory, Practice, and Experiment, Abstracts of Reports, 1999.
8. Gapeev, Paleomagnetism and Magnetism of Rocks: Theory, Practice, and Experiment, Abstracts of Reports, 2002.
9. Gapeev, Izv. Phys. Solid Earth, v. 38, 2002.
10. Gapeev, Izv. Phys. Solid Earth, v. 44, 2008.
11. Gribov, Processes of single-phase oxidation and subsequent decomposition of titanomagnetites and their implications for rock magnetism and paleomagnetism, 2004.
12. Havard, Geophys. J. R. Astron. Soc., v. 10, no. 1, 1965.
13. Hedley, Phys. Earth Planet. Inter., v. 1, no. 1, 1968., doi:https://doi.org/10.1016/0031-92016890055-1
14. Heller, Nature, v. 284, no. 5754, 1980., doi:https://doi.org/10.1038/284334a0
15. Hoffman, Phys. Earth. Planet. Inter., v. 30, no. 4, 1982., doi:https://doi.org/10.1016/0031-92018290044-9
16. Hoffmann, Geophys. Res. Lett., v. 23, no. 20, 1996., doi:https://doi.org/10.1029/96GL01317
17. Kennedy, J. Geomagn. Geoelectr., v. 33, no. 8, 1981.
18. Lewis, Geophys. J. R. Astron. Soc., v. 16, 1968.
19. McClelland, Geophys. J. Int., v. 112, no. 3, 1993., doi:https://doi.org/10.1111/j.1365-246X.1993.tb01185.x
20. Melnikov, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 10, 1976.
21. Minibaev, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 8, 1965.
22. Nagata, Rock-Magnetism, 1961.
23. N#xE9;el, Ann. G, v. 7, no. 2, 1951.
24. Ozima, J. Geomagn. Geoelectr., v. 20, no. 4, 1968.
25. Ozima, Earth Planets Space, v. 53, no. 2, 2001.
26. Ozima, Earth Planets Space, v. 55, no. 4, 2003.
27. Petersen, Z. Geophys., v. 39, 1973.
28. Pr#xE9;vot, Phys. Earth Planet. Inter., v. 126, no. 1--2, 2001., doi:https://doi.org/10.1016/S0031-92010100245-X
29. Shcherbakov, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 1, 1976.
30. Trukhin, Izv. Phys. Solid Earth, v. 33, 1997.
31. Trukhin, Izv. Phys. Solid Earth, v. 42, 2004.
32. Tucker, J. Geomagn. Geoelectr., v. 32, no. 6, 1980.
33. Verhoogen, J. Geophys. Res., v. 64, no. 12, 1959., doi:https://doi.org/10.1029/JZ064i012p02441
34. Westcott-Lewis, Aust. J. Phys., v. 24, 1971.
35. Zhilyaeva, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 10, 1970.
36. Zhilyaeva, Izv. Akad. Nauk SSSR, Fiz. Zemli, no. 6, 1971.
37. Zvegintsev, Geomagn. Aeron., v. XIII, no. 3, 1973.