BISAC SCI019000 Earth Sciences / General
The geochemical (REE & traces elements) characteristics of Permo-Carboniferous sandstone has been taken into account to decipher tectonic setting and provenance of the Rangit Pebble Slate Formation of Sikkim Lesser Himalaya. The chondrite normalized REE pattern with Eu negative anomaly and a bivariate plot (Th/Co-La/Sc) clearly indicates that studied sediments were likely derived from upper crust felsic source. The average elemental ratio of traces elements La/Sc (∼ 3.85), Th/Sc (∼ 2.57), Cr/Th (∼ 6.64), Th/Co (∼ 2.52), La/Co (∼ 3.74), and Eu/Eu* (∼ 0.32) also shows close affinities with Upper Continental Crust. The trivariate plot (La-Th-Sc plot, Th-Sc-Zr/10 plot, & Th-Co-Zr/10 plot) and a bivariate plot (Ti/Zr-La/Sc) plotted on the field of passive tectonic region for the Rangit Pebble Slate Formation sandstone. A binary plot between the ratio of Th/Sc-Zr/Sc and Th/U-Th reflects the enrichment of zircon and weathering trend during sedimentary recycling.
Geochemistry, provenance, tectonic setting, Sikkim Lesser Himalaya, India
1. Belonenko, T., v. Zinchenko, et al. (2020), Evaluation of Heat and Salt Transports by Mesoscale Eddies in the Lofoten Basin, Russ. J. Earth Sci., 20, ES6011, Crossref
2. Benilov, E. S. (2005), Stability of a Two-Layer Quasigeostrophic Vortex over Axisymmetric Localized Topography, Notes and Correspondence p. 123-129, Crossref
3. Biastoch, A., C. W. Boning, J. R. E. Lutjeharms (2008), Agulhas leakage dynamics a ects decadal variability in Atlantic overturning circulation, Nature, 456, 489-492, Crossref
4. Byrne, D. A., A. L. Gordon, W. F. Haxby (1995), Agulhas eddies a synoptic view using Geosat ERM data, J. Phys. Oceanogr., 25, 902-917, Crossref
5. Chelton, D. B., M. G. Schlax, R. M. Samelson (2011), Global observations of nonlinear mesoscale eddies,Prog. Oceanogr., 91, 167-216, Crossref
6. Cushman-Roisin, B. (1994), Introduction to Geophysical Fluid Dynamics, Prentice-Hall, Upper Saddle River, N. J. Duba, C. T., T. B. Doyle, J. F. McKenzie (2014), Rossby wave patterns in zonal and meridional winds, Geophysical & Astrophysical Fluid Dynamics, 108, No. 3, 237-257, Crossref
7. Early, J. J., R. M. Samelson, D. B. Chelton (2011), The Evolution and Propagation of Quasigeostrophic Ocean Eddies, J. Phys. Oceanogr., 41, 1535-1555, Crossref
8. Giulivi, C. F., A. L. Gordon (2006), Isopycnal displacements within the Cape Basin thermocline as revealed by the hydrographic data archive, Deep Sea Res. Part I., 53, 1285-1300, Crossref
9. Gnevyshev, v. G., T. v. Belonenko (2020), The Rossby paradox and its solution, Hydrometeorology and Ecology. Proceedings of the Russian State Hy- drometeorological University, 61, 480-493, (in Rus- sian)Crossref
10. Gnevyshev, v. G., v. I. Shrira (1989a), Dynamics of Rossby wave packets in the vicinity of the zonal critical layer taking into account viscosity, Izv. Akad. Nauk SSSR, Fiz Atmos. Okeana, 25, No. 10, 1064- 1074
11. Gnevyshev, v. G., v. I. Shrira (1989b), Kinematics of Rossby waves on non-uniform meridional current, Okeanologiya, 29, No. 4, 543-548
12. Gnevyshev, v. G., v. I. Shrira (1989c), On the evaluation of barotropic-baroclinic instability param- eters of the zonal ows in beta-plane, Dokl. Akad. Nauk. SSSR, 306, No. 2, 305-309
13. Gnevyshev, v. G., v. I. Shrira (1989d), Transfor- mation of monochromatic Rossby waves in the criti- cal layer of the zonal current, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 25, No. 8, 852-862
14. Gnevyshev, v. G., v. I. Shrira (1990), On the evaluation of barotropic-baroclinic instability param- eters of zonal ows on a beta-plane, J. Fluid. Mech., 221, 161-181, Crossref
15. Gnevyshev, v. G., S. I. Badulin, T. v. Belonenko (2020), Rossby waves on non-zonal currents: struc- tural stability of critical layer effects, Pure Appl. Geo- phys., Crossref
16. Gnevyshev, v. G., A. v. Frolova, et al. (2019), Interaction of Rossby waves with a jet stream: ba- sic equations and their veri cation for the Antarc- tic circumpolar current, Izvestiya, Atmospheric and Oceanic Physics, 55, No. 5, 412-422
17. Gnevyshev, v. G., A. v. Frolova, et al. (2021), Topographic Effect for Rossby Waves on a Zonal Shear Flow, Fundamentalnaya i Prikladnaya Gidro - zika, 14, No. 1, 4-14, Crossref
18. Gordon, A. L., W. F. Haxby (1990), Agulhas ed- dies invade the South Atlantic: Evidence from Geosat altimeter and shipboard conductivity-temperature- depth survey, J. Geophys. Res. C: Oceans, 95, 3117-3125, Crossref
19. Guerra, L. A. A., A. M. Paiva, E. P. Chassignet (2018), On the translation of Agulhas rings to the western South Atlantic Ocean, Deep-Sea Research Part I, 139, 104-113, Crossref
20. Kamenkovich, v. M., Y. P. Leonov, et al. (1996), On the In uence of Bottom Topography on the Ag- ulhas Eddy, Journal of Physical Oceanography, 26, No. 6, 892-912, Crossref
21. Korotaev, G. K., A. B. Fedotov (1994), Dynamics of an isolated barotropic eddy on a beta-plane, J. Fluid Mech., 264, Crossref
22. Korotaev, G. K., v. L. Dorofeev, A. B. Fedotov (1997), Dynamics of an intensive isolated barotropic eddy in the presence of background vorticity, Physical Oceanography, 8, 1, Crossref
23. Leonov, Y. P. (1995), Vliyaniye topogra i na vikhri Aguliasskogo techeniya, Avtoreferat dissertatsii kand. z.-mat. nauk, Institut Okeanologii im. P. P. Shir- shova, Moscow. (in Russian)
24. Lighthill, M. J. (1967), On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating uids, Jour- nal of Fluid Mechanics, 27, No. 4, 725, Crossref
25. Lord Kelvin (1906), Deep Sea Ship-Waves, Proc. R. Soc. Edinburgh, 25, 1060, Crossref
26. Malysheva, A. A., A. A. Kubryakov, et al. (2020a), Agulhas Leakage Estimation Using Altimetry and Argo Data, Issledovanie Zemli iz Kosmosa, 2, 24- 34. (in Russian)
27. Malysheva, A. A., A. A. Kubryakov, et al. (2020b), Estimating Agulhas Leakage by Means of Satellite Al- timetry and Argo Data, Izvestiya, Atmospheric and Oceanic Physics, 56, 1581-1589, Crossref
28. Morrow, R., F. Birol, et al. (2004), Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311, Crossref
29. Nezlin, M. V. (1986), Rossby solitons (Experimental investigations and laboratory model of natural vor- tices of the Jovian Great Red Spot type), Sov. Phys. Usp., 29, 807-849, Crossref
30. Reznik, G. M. (1992), Dynamics of singular vortices on a beta-plane, Journal of Fluid Mechanics, 240, 405-432, Crossref
31. Reznik, G. M. (2010), Dynamics of localized vortices on the beta plane, Izvestiya. Atmospheric and Oceanic Physics, 46, No. 6, 784-797, (in Russian)Crossref
32. Reznik, G. M., W. K. Dewar (1994), An analytical theory of distributed axisymmetric barotropic vortices on the 𝛽-plane, Journal of Fluid Mechanics, 269, 301-321, Crossref
33. Reznik, G. M., Z. Kizner (2010), Singular vortices in regular ows, Theoretical and Computational Fluid Dynamics, 24, No. 1-4, 65-75, Crossref
34. Reznik, G. M., T. B. Tsybaneva (1994), The effect of topography and strati cation on planetary waves in the ocean, Okeanologiya, 34, No. 1, 5. (in Russian)
35. Shrira, v. I., W. A. Townsend (2010), Inertia- gravity waves beyond the inertial latitude. Part 1. Inviscid singular focusing, J. Fluid Mech., 664, 478-509, Crossref
36. Travkin, v. S., T. v. Belonenko (2019), Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data, Russ. J. Earth Sci., 19, No. 5, ES5004, Crossref
37. Williams, S., M. Petersen, et al. (2011), Adaptive extraction and quanti cation of geophysical vortices, IEEE Transactions On Visualization and Computer Graphics, 17, No. 12, 2088-2095