Computationally Effective Gravity Inversion Allows for High-Resolution Regional Density Modeling of Earth's Crust with the Inclusion of the Topography Layer
Аннотация и ключевые слова
Аннотация (русский):
The problem of inverting measured gravity data for large regions is of a great importance for planetary structure studies. Unfortunately, the usual methods of local gravity field inversion do not scale up well. There are three primary factors that start to play significant role: topography or terrain surface with large height differences, spherical geometry of the planet, and high computational complexity. In our previous work we were separately considering each of those problems in detail. In this paper however, we will address those issues simultaneously, offering a complete and computationally effective method of recovering spherical density model of Earth's crust with the upper topography layer. The method utilizes a closed form expression for the discretized model's gravity field which allows for great accuracy and speed without enforcing restrictions on model geometry or gravity field data grid. Inversion process is based on the conjugate gradient method. An example of inversion for a synthetic regional model is presented.

Ключевые слова:
spherical density model, terrain density model, gravity field inversion, gravimetry
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Chernoskutov, A. I., and D. D. Byzov, GRAFEN v0.1 - Gravity Field Ellipsoidal Density Model Numerical Computations for CUDA-Enabled Distributed Systems, https://github.com/charlespwd/project-title, 2019.

2. Ince, E. S., F. Barthelmes, S. Reißland, K. Elger, C. Forste, F. Flechtner, and H. Schuh, ICGEM - 15 Years of Successful Collection and Distribution of Global Gravitational Models, Associated Services, and Future Plans, Earth System Science Data, 11(2), 647-674, doihttps://doi.org/10.5194/essd-11-647-2019, 2019.

3. Ladovskii, I. V., P. S. Martyshko, D. D. Byzov, and V. V. Kolmogorova, On Selecting the Excess Density in Gravity Modeling of Inhomogeneous Media, Izvestiya, Physics of the Solid Earth, 53(1), 130-139, doihttps://doi.org/10.1134/S1069351316060057, 2017.

4. Martyshko, P. S., I. V. Ladovskii, and A. G. Tsidaev, Construction of Regional Geophysical Models Based on the Joint Interpretation of Gravitaty and Seismic Data, Izvestiya, Physics of the Solid Earth, 46(11), 931-942, doihttps://doi.org/10.1134/S1069351310110030, 2010.

5. Martyshko, P. S., I. V. Ladovskii, D. D. Byzov, and A. G. Tsidaev, Gravity Data Inversion with Method of Local Corrections for Finite Elements Models, Geosciences, 8(10), doihttps://doi.org/10.3390/geosciences8100373, 2018a.

6. Martyshko, P. S., I. V. Ladovskij, D. D. Byzov, and A. I. Chernoskutov, On Solving the Forward Problem of Gravimetry in Curvilinear and Cartesian Coordinates: Krasovskii’s Ellipsoid and Plane Modeling, Izvestiya, Physics of the Solid Earth, 54(4), 565-573, doihttps://doi.org/10.1134/S1069351318040079, 2018b.

7. Martyshko, P. S., D. D. Byzov, and A. I. Chernoskutov, Interpretation of Gravity Data Measured by Topography, Doklady Earth Sciences, 495(2), 914-917, doihttps://doi.org/10.1134/S1028334X20120077, 2020.

8. Pedersen, L. B., J. Kamm, and M. Bastani, A Priori Models and Inversion of Gravity Gradient Data in Hilly Terrain, Geophysical Prospecting, 68(3), 1072-1085, doihttps://doi.org/10.1111/1365-2478.12897, 2020.

9. Potts, L. V., and R. R. von Frese, Comprehensive Mass Modeling of the Moon From Spectrally Correlated Free-Air and Terrain Gravity Data, Journal of Geophysical Research: Planets, 108(E4), doi:https://doi.org/10.1029/2000JE001440, 2003.

10. van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, doihttps://doi.org/10.1017/CBO9780511615115, 2003.

Войти или Создать
* Забыли пароль?