Новосибирск, Новосибирская область, Россия
УДК 553.25 Первичные и вторичные минералы. Гипогенные и супергенные минералы
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
Представлены результаты исследований состава и формы выделения вторичных минералов Fe, Pb, Cu, сформированных в контрастных физико-химических условиях складированных отходов обогащения барит-полиметаллических руд Салаирского рудного поля. Сложный минеральный состав руд (пирит, халькопирит, сфалерит, галенит, блеклые руды) и длительные процессы химического выветривания вещества способствовали образованию мономинеральных и зональных вторичных кайм и заполнений межзернового пространства, которые удалось идентифицировать с применением современных методов исследования. Среди них преобладают плюмбоярозит, англезит, церуссит и гидроксиды железа, реже встречается пироморфит, гинсдалит и ковеллин. Методом термодинамического моделирования решалась обратная задача – восстановление состава растворов, приведших к смене ассоциаций вторичных минералов. Протекающие процессы определяются не только химическим взаимодействием, но и электрохимическими реакциями в рассматриваемых системах, где различные минеральные компоненты выступают в роли гальванических пар, что в сочетании с физико-химическими параметрами среды (pH, Eh, ионный состав растворов) приводит к ступенчатому или неполному окислению исходных минералов с последующим избирательным отложением вторичных соединений.
сульфидсодержащее хвостохранилище, вторичные минералы, электрохимические реакции, физико-химическая модель
1. Бортникова, С.Б., Н.А. Абросимова, А.Ю. Девятова, Е.П. Шевко, Н.В. Юркевич, Н.К. Черный, И.В. Даниленко, и Н.А. Пальчик, Летучесть химических элементов при дегидрации вторичных сульфатов, Известия Томского политехнического университета. Инжиниринг георесурсов, 333(1), 121-133, 2022.
2. Бортникова, С.Б., О.Л. Гаськова, и Е.П. Бессонова, Геохимия техногенных систем, Новосибирск: Академическое изд-во "Гео", 169 с, 2006.
3. Бортникова, С.Б., Н.В. Юркевич, А.В. Еделев, О.П. Саева, С.П. Грахова, С.С. Волынкин, и Ю.Г. Карин, Гидрохимические и газовые аномалии на сульфидном хвостохранилище (Салаир, Кемеровская область), Известия Томского политехнического университета. Инжиниринг георесурсов, 332(2), 26-35, 2021.
4. Игнаткина, В.А., В.А. Бочаров, и А.А. Каюмов, Основные принципы выбора способов разделения полиметаллических концентратов с близкими свойствами сульфидных минералов. Физико-технические проблемы разработки полезных ископаемых, 216(2), 140-154, 2016.
5. Кайгородова, Е.Н., П.М. Карташов, и В.А. Петров, Минералы надгруппы алунита из зоны окисления золото-сульфидного месторождения Радужное (Кабардино-Балкария), ИМин УрО РАН, 179-182, 2018.
6. Оленченко, В.В., Д.О. Кучер, С.Б. Бортникова, О.Л. Гаськова, А.В. Еделев, и М.П. Гора, Вертикальное и латеральное распространение высокоминерализованных растворов кислого дренажа по данным электротомографии и гидрогеохимии (Урской отвал, Салаир), Геология и геофизика, 57(4), 782-795, 2016.
7. Смирнов, С.С. Зона окисления сульфидных месторождений, M.-Л., Изд-во АН СССР, 332 с, 1955.
8. Черкасова Е.В., Мироненко М.В., Сидкина Е.С. Кинетико-термодинамическое моделирование кислотного дренажа объединенной технологической пробы с месторождения Павловское (архипелаг Новая Земля, о. Южный). Предварительная оценка. Геохимия 66 (2), 183-190, 2021.
9. Шваров, Ю.В., HCh: Новые возможности термодинамического моделирования геохимических систем, предоставляемы Windows, Геохимия, 8, 898-903, 2008.
10. Яхонтова, Л.К., и А.П. Грудев, Зона гипергенеза рудных месторождений. М.: изд-во МГУ, 229 с, 1978.
11. Biswas, A., M.J. Hendry, and J. Essilfie-Dughan Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada, Sci. Total Environ., 579, 396-408, 2017.
12. Blowes, D.W., C.J. Ptacek, J.L. Jambor, C.G. Weisener, D. Paktunc, W.D. Gould, D.B. Johnson, The Geochemistry of Acid Mine Drainage, Treatise on Geochemistry (Second Edition), 11, 131-190, 2014.
13. Bortnikova S.B., Airiants A.A., Lasareva E.V., Karlova S.B., Mineralogical forms of precious metals in oxidized ores of the Salair mine, West Siberia, and their importance in the metallurgical treatment. Process Mineralogy XIII: Applications to Benefication Problems, Pyrometallurgical Products, Advanced Mineralogical Techniques and Other Industrial Problems, 213-223, 1995.
14. Bortnikova, S.B., N.V. Yurkevich, O.L. Gaskova, A.Y. Devyatova, I.I. Novikova, S.S. Volynkin, A.V. Mytsik, and V.A. Podolinnaya, Element transfer by a vapor-gas stream from sulfide mine tailings: from field and laboratory evidence to thermodynamic modeling, Environmental Science and Pollution Research, 28(12), 14927-14942, 2021a.
15. Bortnikova, S.B., N.V. Yurkevich, O.L. Gaskova, S.S. Volynkin, A.V. Edelev, S.P. Grakhova, O.I. Kalnaya, A.S. Khusainova, M.P. Gora, A.A. Khvashchevskaya, O.P. Saeva, V.A. Podolynnaya, and V.V. Kurovskaya, Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage, Chemical Geology, 586, 120623, 2021b.
16. Carbone, C., E. Dinelli, P. Marescotti, G. Gasparotto, and G. Lucchetti, The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests, J. Geochem. Explor., 132, 188-200, 2013.
17. Chandra, An., R.C. Agrawa, and Y.K. Mahipa, Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes, J. Phys. D: Appl. Phys., 42, 135107, 2009.
18. Chapman, B.M., D.R. Jones, and R.F. Jung, Processes controlling metal ion attenuation in acid mine drainage streams, Geochimica et Cosmochimica Acta, 47(11), 1957-1973, 1983.
19. Chopard, A., B. Plante, M. Benzaazoua, H. Bouzahzah, and Ph. Marion, Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides, Chemosphere, 166, 281-291, doi.org/10.1016/j.chemosphere.2016.09.129, 2017.
20. Epp, T., M. A.W. Marks, Th. Ludwig, M.A. Kendrick, N. Eby, H. Neidhardt, Yv. Oelmann, and Gr. Markl, Crystallographic and fluid compositional effects on the halogen (Cl, F, Br, I) incorporation in pyromorphite-group minerals, American Mineralogist, 104(11), 2019.
21. Forray, F.L., M.L. Smith, C. Drouet, A. Navrotsky, K. Wright, K.A. Hudson-Edwards, and W.E. Dubbin, Synthesis, characterization and thermochemistry of a Pb-jarosite, Geochimica et Cosmochimica Acta, 74(1), 215-224, 2010.
22. Frau, F., C. Ardau, and L. Fanfani, Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy), Journal of Geochemical Exploration, 100(2-3), 105-115, 2009.
23. Gomes, Fr.Pr., M.S.C. Barreto, A. Amoozegar, and L.R.F. Alleoni, Immobilization of lead by amendments in a mine-waste impacted soil: Assessing Pb retention with desorption kinetic, sequential extraction and XANES spectroscopy, Science of The Total Environment, 807(1), 150711, 2022.
24. Grasby, S.E., J.B. Percival, I. Bilot, O.H. Ardakani, I.R. Smith, J. Galloway, M. Bringué, and T.Mc. Loughlin-Coleman, Extensive jarosite deposits formed through auto-combustion and weathering of pyritiferous mudstone, Smoking Hills (Ingniryuat), Northwest Territories, Canadian Arctic - A potential Mars analogue, Chemical Geology, 587, 120634, 2022.
25. Holmes, P.R., and F.K. Crundwell, Kinetic aspects of galvanic interactions between minerals during dissolution, Hydrometallurhy, 39, 353-375, 1995.
26. Kalinnikov, V.T., D.V. Makarov, V.N. Makarov, Oxidation Sequence of Sulfide Minerals in Operating and Out-of-Service Mine Waste Storage. Theoretical Foundations of Chemical Engineering, 35(1), 63-68, 2001.
27. Lasaga, A.C., J.M. Soler, J. Ganor, T.E. Burch, and K.L. Nagy, Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta, 58(10), 2361-2386, 1994.
28. Lazareva, E.V., I.N. Myagkaya, I.S. Kirichenko, M.A. Gustaytis, and S.M. Zhmodik, Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements, Science of the Total Environment, 660, 468-483, 2019.
29. Li, Zh., M. Su, X. Duana, D. Tian, M. Yang, J. Guo, Sh. Wang, and Sh. Hu, Induced biotransformation of lead (II) by Enterobacter sp. in SO4-PO4-Cl solution, Journal of Hazardous Materials, 357, 491-497, 2018.
30. Long, D.T., N.E. Fegan, and J.D. McKee Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrell, Victoria, Australia, Chemical Geology, 96, 183-202, 1992.
31. Maluckov, B.S., Biorecovery of nanogold and nanogold compounds from gold-containing ores and industrial wastes, Applied Microbiology and Biotechnology, 105, 3471-3484, 2021.
32. Manecki, M., M. Kwaśniak-Komineka, J.M. Majka, and J. Rakovan, Model of interface-coupled dissolution-precipitation mechanism of pseudomorphic replacement reaction in aqueous solutions based on the system of cerussite PbCO3 - pyromorphite Pb5(PO4)3Cl. Geochimica et Cosmochimica Acta, 289, 1-13, 2020.
33. Ogawa, Sh., T. Sato, and M. Katoh, Enhancing pyromorphite formation in lead-contaminated soils by improving soil physical parameters using hydroxyapatite treatment, Science of The Total Environment, 747, 141292, 2020.
34. Owen, N.D., N.J. Cook, R. Ram, B. Etschmann, K. Ehrig, D.S. Schmandt, M. Rollog, P. Guagliardo, and J. Brugger, The dynamic uptake of lead and its radionuclides by natural and synthetic aluminium-phosphate-sulfates, Minerals Engineering, 160, 106659, doi.org/10.1016/j.mineng.2020.106659, 2021.
35. Qin, W., X. Wang, L. Ma, F. Jiao, R. Liu, C. Yang, and K. Gao, Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite, Minerals Engineering, 74, 99-104, doihttps://doi.org/10.1016/j.mineng.2015.01.010, 2015.
36. Shahhosseini M., F.D. Ardejani, M. Amini, L. Ebrahimi, and A. Mohebi, Poorkani Environmental geochemistry of As and Pb in a copper low-grade dump, Miduk copper mine, Kerman province, SE Iran, Journal of Geochemical Exploration, 198, 54-70, 2019.
37. Sobek A.A. Field and laboratory methods applicable to overburdens and minesoils. Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 1978. 203 p.
38. Taran O. Electron Transfer between Electrically Conductive Minerals and Quinones. Front. Chem., 5(49), doi:https://doi.org/10.3389/fchem.2017.00049, 2017
39. Tosca, N.J., S.M. McLennan, M.D. Dyar, E.C. Sklute, and F.M. Michel, Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars, Journal of Geophysical Research: Planets, 113(E5), 2008.
40. Vaziri, V., A.R. Sayadi, A. Parbhakar-Fox, A. Mousavi, and M. Monjezi, Improved mine waste dump planning through integration of geochemical and mineralogical data and mixed integer programming: Reducing acid rock generation from mine waste, Journal of Environmental Management, 309, 114712, 2022.
41. Vithana, Ch. L., L.A. Sullivan, Ed.D. Burton, and R.T. Bush Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation, Geoderma, 239-240, 47-57, 2015.
42. Wang, J., and H. Zeng, Recent advances in electrochemical techniques for characterizing surface properties of minerals, Advances in Colloid and Interface Science, 288, 102346, doihttps://doi.org/10.1016/j.cis.2020.102346, 2021.
43. Wang, X., W. Qin, F. Jiao, and J. Wu, The influence of galvanic interaction on the dissolution and surface composition of galena and pyrite in flotation system, Minerals Engineering, 156, 106525, doihttps://doi.org/10.1016/j.mineng.2020.106525, 2020.
44. Zhang, P., J.A. Ryan, and L.T. Bryndzia Pyromorphite Formation from Goethite Adsorbed Lead, Environ. Sci. Technol., 31(9), 2673-2678, 1997.
45. Zhao, X., W. Zou, Z.L. Zhang, Z.Q. Zhu, and Y.N. Zhu, The Characteristic Dissolution and Physical Chemistry Parameter of Synthetic Pyromorphite, Advanced Materials Research, 887-888, 975-978, 2014.
46. Zolotov, M.Y., and Ev.L. Shock, Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophysical Research Letters, 32(21), L21203, 2005.