PROJECTED CHANGES IN THE NEAR-SURFACE ATMOSPHERE OVER THE BARENTS SEA BASED ON CMIP5 SCENARIOS
Аннотация и ключевые слова
Аннотация (русский):
Atmospheric climatological characteristics of the Barents Sea were analyzed in the model output of AMIP5 models for the present climate and climate projections under RCP4.5 and RCP8.5 scenarios for different periods of the 21st century. The results reveal strong changes in the mean surface air temperature amounting to more than 2 degrees during the 21st century. In line with this the frequency and duration of heat waves is increasing with the number and duration of the cold waves decreasing in course of the time period analyzed. Mean wind speed demonstrates upward changes under both RCP4.5 and RCP8.5 scenarios and these changes are accompanied by the upward change in the extreme wind speed over the Barents Sea at least for the first half of the century. The results are discussed in the context of potential changes in the atmospheric moisture transports which might be intensified during 21st century.

Ключевые слова:
Barents Sea, climate change, CMIP5 projections, surface temperature growth, marine ecology
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Andreas E.L., Persson P.O.G., Hare J.E. A Bulk Turbulent Air-Sea Flux Algorithm for High-Wind, Spray Conditions // Journal of Physical Oceanography. - 2008. V. 38(7). - P. 1581-1596.

2. Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., ... & Imecs, Z. (2017). Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Climate dynamics, 49(7-8), 2665-2683.

3. Carrere L. et al. FES 2014, a new tidal model-Validation results and perspectives for improvements // ESA Living Planet Conference, Prague. - 2016.

4. CMIP5: https://esgf-data.dkrz.de/search/cmip5-dkrz/

5. Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., ... & Martin, G. Development and evaluation of an Earth-System model - HadGEM2 // Geoscientific Model Development. - 2011. V. 4(4). - P. 1051-1075.

6. Condron A., G.R.Bigg, I.A. Renfrew. Modeling the impact of polar mesocyclones on ocean circulation // Journal of Geophysical Research: Oceans - 2008. V. 113(10).

7. Frouin, R., Iacobellis, S. F., & Deschamps, P. Y. Influence of oceanic whitecaps on the Global Radiation Budget // Geophys. Res. Lett. - 2001. V. 28(8). - P. 1523-1526.

8. Gent P.R. et al. The Community Climate System Model Version 4 // Journal of Climate. - 2011. V. 24(19). - P. 4973-4991.

9. Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., ... & Glushak, K. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5 // Journal of Advances in Modeling Earth Systems - 2013. V. 5(3). - P. 572-597.

10. Grant B. Polar lows. Edited by Erik A. Rasmussen and John Turner. Cambridge University Press. 2003. 612 pp. ISBN 0 521 62430 4 // Weather. - 2006. V. 58(11). - P. 443-444.

11. Holland, H.D. The oxygenation of the atmosphere and oceans // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2006. 361(1470). Pp. 903-915.

12. Johannessen, O.M., Bengtsson, L., Miles, M.W., Kuzmina, S.I., Semenov, V.A., Alekseev, G.V., ... & Hasselmann, K. (2004). Arctic climate change: observed and modelled temperature and sea-ice variability // Tellus A: Dynamic Meteorology and Oceanography, 56(4). - Pp. 328-341.

13. Jones, P.D., & Moberg, A. (2003). Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001 // Journal of climate, 16(2). - Pp. 206-223.

14. Kattsov, V.M., & Walsh, J.E. (2000). Twentieth-century trends of Arctic precipitation from observational data and a climate model simulation // Journal of Climate, 13(8). Pp. 1362-1370.

15. Kislov, A. and Matveeva, T. (2020) The Monsoon over the Barents Sea and Kara Sea. Atmospheric and Climate Sciences, 10, 339-356. doi:https://doi.org/10.4236/acs.2020.103019.

16. Landgren, OA, Batrak, Y, Haugen, JE, Støylen, E, Iversen, T. Polar low variability and future projections for the Nordic and Barents Seas. Q J R Meteorol Soc. 2019; 145: 3116- 3128. https://doi.org/10.1002/qj.3608.

17. Munk W., Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing // Deep Sea Res. Part I Oceanogr. Res. Pap. 1998. Vol 45. № 12. pp. 1977-2010.

18. Myslenkov S., Medvedeva A., Arkhipkin V., Markina M., Surkova G., Krylov A., Dobrolyubov S., Zilitinkevich S., and Koltermann P. Long-term statistics of storms in the Baltic, Barents and White seas and their future climate projections. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 11(1):93-112, 2018.

19. Noer G. et al. A climatological study of polar lows in the Nordic Seas // Q. J. R. Meteorol. Soc. 2011. VOL. 137. № 660. PP. 1762-1772.

20. Nuttall M. Encyclopedia of the Arctic. : Routledge, 2012.

21. On the Theory of Oscillatory Waves // Mathematical and Physical Papers Cambridge Library Collection - Mathematics. / Eds. G.G. Stokes. Cambridge: Cambridge University Press, 2009. PP. 197-229.

22. Overland, J. E., Wood, K. R., & Wang, M. (2011). Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Research, 30(1), 15787.

23. Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., & Comiso, J. C. (1999). Arctic sea ice extents, areas, and trends, 1978-1996. Journal of Geophysical Research: Oceans, 104(C9), 20837-20856.

24. Pavelsky, T. M., & Smith, L. C. (2006). Intercomparison of four global precipitation data sets and their correlation with increased Eurasian river discharge to the Arctic Ocean. Journal of Geophysical Research: Atmospheres, 111(D21).

25. Polzin K.L. et al. Spatial Variability of Turbulent Mixing in the Abyssal Ocean // Science (80-. ). 1997. VOL. 276. № 5309. PP. 93 LP-96.

26. Rigor, I. G., Colony, R. L., & Martin, S. (2000). Variations in surface air temperature observations in the Arctic, 1979-97. Journal of Climate, 13(5), 896-914.

27. Romero, S. I., Piola, A. R., Charo, M., & Garcia, C. A. E. Chlorophyll-a variability off Patagonia based on SeaWiFS data // J. Geophys. Res. Ocean. 2006. VOL. 111. № C5.

28. Semmler, T., L. Stulic, T. Jung, N. Tilinina, C. Campos, S. Gulev, and D. Koracin, 2016: Seasonal Atmospheric Responses to Reduced Arctic Sea Ice in an Ensemble of Coupled Model Simulations. J. Climate, 29, 5893-5913, https://doi.org/10.1175/JCLI-D-15-0586.1

29. Shapiro G.I., Hill A.E. Dynamics of Dense Water Cascades at the Shelf Edge // J. Phys. Oceanogr. 1997. VOL. 27. № 11. PP. 2381-2394.

30. Smirnova J. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data // Geophys. Res. Lett. 2015. VOL. 42. № 13. PP. 5603-5609.

31. Smirnova J.E., Zabolotskikh, E. V., Bobylev, L. P., & Chapron, B. Statistical characteristics of polar lows over the Nordic Seas based on satellite passive microwave data // Izv. Atmos. Ocean. Phys. 2016. VOL. 52. № 9. PP. 1128-1136.

32. Stevens, B., et al. (2013), Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146-172, doi:https://doi.org/10.1002/jame.20015.

33. Stokes, G. G. (1847). GG Stokes, On the theory of oscillatory waves, Camb. Trans. 8, 441 (1847); see also. Camb. Trans., 8, 441.

34. Taylor K.E., Stouffer R.J., Meehl G.A. An Overview of CMIP5 and the Experiment Design // Bull. Am. Meteorol. Soc. 2011. VOL. 93. № 4. PP. 485-498.

35. Vavrus, S., Holland, M. M., & Bailey, D. A. (2011). Changes in Arctic clouds during intervals of rapid sea ice loss. Climate Dynamics, 36(7-8), 1475-1489.

36. Veron F., Melville W.K., Lenain L. The Effects of Small-Scale Turbulence on Air-Sea Heat Flux // J. Phys. Oceanogr. 2010. VOL. 41. № 1. PP. 205-220.

37. Veron F., Melville W.K., Lenain L. Wave-Coherent Air-Sea Heat Flux // J. Phys. Oceanogr. 2008. VOL. 38. № 4. PP. 788-802.

38. Vihma, T. (2014). Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35(5), 1175-1214.

39. Walczowski, W., & Piechura, J. (2006). New evidence of warming propagating toward the Arctic Ocean. Geophysical Research Letters, 33(12).

40. Watanabe M. et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity // J. Clim. 2010. VOL. 23. № 23. PP. 6312-6335.

41. Watanabe S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments // Geosci. Model Dev. 2011. VOL. 4. № 4. PP. 845-872.

42. Yang, X. Y., Yuan, X., & Ting, M. (2016). Dynamical link between the Barents-Kara sea ice and the Arctic Oscillation. Journal of Climate, 29(14), 5103-5122.

43. Zahn M, von Storch H. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature. 2010 Sep 16;467(7313):309-12. doi:https://doi.org/10.1038/nature09388. PMID: 20844533.

44. Zhang, J. (2005). Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophysical Research Letters, 32(19).

Войти или Создать
* Забыли пароль?