Одинцово, г. Москва и Московская область, Россия
Одинцово, г. Москва и Московская область, Россия
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
BISAC SCI SCIENCE
The paper presents analysis of intra-centennial (inter-decadal and multidecadal) variations of the length of day (LOD) and some oceanic parameters such as sea surface temperature (SST) and sea level (SL). Methods of multivariate regression analysis and correlation analysis are used. Results of the regression analysis show a spatially coherent response of SST to LOD variations on the multidecadal time scale. The earlier response is peculiar to the north and tropical Atlantic where the multidecadal SST variations are approximately opposite to the LOD variations. In the most remaining parts of the oceans, except especially in the Nino 3.4 region of the equatorial east Pacific, the multidecadal SST variations are generally lagged relative to the antiphase variations of the LOD. Smoothing of SST averaged over different areas and of the global mean SL shows that the intra-annual variations include inter-decadal, 20–30-year, multidecadal, 60–70-year, components that correspond to similar oscillation components in the LOD. The most striking correspondence of the two components is observed between the LOD and SST averaged over the Nino 3.4 region. Generally, there are significant correlations of the intra-centennial variations on the averaged and smoothed SST series and global mean SL with the LOD variations. We propose that angular momentum exchange processes involving oceanic circulation and interactions between the Earth’s core and the mantle play probably a part in the observed relationships of intra-centennial variations in oceanic parameters with variations in the LOD.
length of day, sea surface temperature, sea level, intra-centennial oscillations
1. Cappellini, V., A. G. D. Constantinides, and P. Emiliani (1978), Digital filters and their applications, 393 pp., Academic Press, London.
2. Chambers, D. P., M. A. Merrifield, and R. S. Nerem (2012), Is there a 60-year oscillation in global mean sea level?, Geophysical Research Letters, 39(18), L18,607, https://doi.org/10.1029/2012gl052885.
3. Chen, J. (2005), Global mass balance and the length-of-day variation, Journal of Geophysical Research, 110(B8), B08,404, https://doi.org/10.1029/2004jb003474.
4. Christian, C., and J. Roy (2017), The Earth and Moon System, in A Question and Answer Guide to Astronomy, pp. 1-32, Cambridge University Press, https://doi.org/10.1017/9781316681558.003.
5. Church, J. A., and N. J. White (2011), Sea-Level Rise from the Late 19th to the Early 21st Century, Surveys in Geophysics, 32(4-5), 585-602, https://doi.org/10.1007/s10712-011-9119-1.
6. Draper, N. R., and H. Smith (1998), Applied regression analysis, 706 pp., Wiley, New York.
7. Drenkard, E. J., and K. B. Karnauskas (2014), Strengthening of the Pacific Equatorial Undercurrent in the SODA Reanalysis: Mechanisms, Ocean Dynamics, and Implications, Journal of Climate, 27(6), 2405-2416, https://doi.org/10.1175/jcli-d-13-00359.1.
8. Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble (2001), The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28(10), 2077-2080, https://doi.org/10.1029/2000gl012745.
9. Gray, L. J., J. Beer, M. Geller, J. D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G. A. Meehl, D. Shindell, B. van Geel, and W. White (2010), Solar influences on climate, Reviews of Geophysics, 48(4), https://doi.org/10.1029/2009rg000282.
10. Gray, L. J., A. A. Scaife, D. M. Mitchell, S. Osprey, S. Ineson, S. Hardiman, N. Butchart, J. Knight, R. Sutton, and K. Kodera (2013), A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, Journal of Geophysical Research: Atmospheres, 118(24), 13,405-13,420, https://doi.org/10.1002/2013jd020062.
11. Gross, R. S. (2007), Earth Rotation Variations - Long Period, in Treatise on Geophysics, vol. 11, pp. 239-294, Elsevier, https://doi.org/10.1016/b978-044452748-6.00057-2.
12. Gruzdev, A. N. (2019a), Accounting for autocorrelation in the linear regression problem by an example of analysis of the atmospheric column NO2 content, Izvestiya, Atmospheric and Oceanic Physics, 55(1), 65-72, https://doi.org/10.1134/s0001433819010043.
13. Gruzdev, A. N. (2019b), Accounting for long-term serial correlation in a linear regression problem, IOP Conference Series: Earth and Environmental Science, 231, 012,020, https://doi.org/10.1088/1755-1315/231/1/012020.
14. Gruzdev, A. N., and V. A. Bezverkhnii (2006), Quasi-biennial variations in ozone and meteorological parameters over western Europe from ozonesonde data, Izvestiya, Atmospheric and Oceanic Physics, 42(2), 203-214, https://doi.org/10.1134/s0001433806020071.
15. Gruzdev, A. N., and V. A. Bezverkhnii (2019), Analysis of solar cycle-like signal in the North Atlantic Oscillation index, Journal of Atmospheric and Solar-Terrestrial Physics, 187, 53-62, https://doi.org/10.1016/j.jastp.2019.03.009.
16. Gruzdev, A. N., and V. A. Bezverkhny (2000), Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind, Journal of Geophysical Research: Atmospheres, 105(D24), 29,435-29,443, https://doi.org/10.1029/2000jd900495.
17. Gruzdev, A. N., and A. S. Elokhov (2021), Changes in the Column Content and Vertical Distribution of NO2 According to the Results of 30-Year Measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Izvestiya, Atmospheric and Oceanic Physics, 57(1), 91-103, https://doi.org/10.1134/s0001433821010084.
18. Holme, R. (2015), Large-Scale Flow in the Core, in Treatise on Geophysics, pp. 91-113, Elsevier, https://doi.org/10.1016/b978-0-444-53802-4.00138-x.
19. Holme, R., and O. de Viron (2013), Characterization and implications of intradecadal variations in length of day, Nature, 499(7457), 202-204, https://doi.org/10.1038/nature12282.
20. Jackson, A., A. R. T. Jonkers, and M. R. Walker (2000), Four centuries of geomagnetic secular variation from historical records, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1768), 957-990, https://doi.org/10.1098/rsta.2000.0569.
21. Jin, S., L. J. Zhang, and B. D. Tapley (2011), The understanding of length-of-day variations from satellite gravity and laser ranging measurements, Geophysical Journal International, 184(2), 651-660, https://doi.org/10.1111/j.1365-246x.2010.04869.x.
22. Knight, J. R., C. K. Folland, and A. A. Scaife (2006), Climate impacts of the Atlantic Multidecadal Oscillation, Geophysical Research Letters, 33(17), https://doi.org/10.1029/2006gl026242.
23. Kravtsov, S., C. Grimm, and S. Gu (2018), Global-scale multidecadal variability missing in state-of-the-art climate models, npj Climate and Atmospheric Science, 1(1), 16,682-16,687, https://doi.org/10.1038/s41612-018-0044-6.
24. Laepple, T., and P. Huybers (2014), Global and regional variability in marine surface temperatures, Geophysical Research Letters, 41(7), 2528-2534, https://doi.org/10.1002/2014gl059345.
25. Mann, M. E., B. A. Steinman, and S. K. Miller (2020), Absence of internal multidecadal and interdecadal oscillations in climate model simulations, Nature Communications, 11(1), 49, https://doi.org/10.1038/s41467-019-13823-w.
26. Marcus, S. L., Y. Chao, J. O. Dickey, and P. Gegout (1998), Detection and modelling of nontidal oceanic effects on Earth’s rotation rate, Science, 281(5383), 1656-1659, https://doi.org/10.1126/science.281.5383.1656.
27. Mazzarella, A. (2008), Solar Forcing of Changes in Atmospheric Circulation, Earth’s Rotation and Climate, The Open Atmospheric Science Journal, 2(1), 181-184, https://doi.org/10.2174/1874282300802010181.
28. Mitrovica, J. X., C. C. Hay, E. Morrow, R. E. Kopp, M. Dumberry, and S. Stanley (2015), Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma, Science Advances, 1(11), https://doi.org/10.1126/sciadv.1500679.
29. Mound, J. E. (2005), Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations, Journal of Geophysical Research, 110(B8), https://doi.org/10.1029/2004jb003555.
30. Munk, W. (2002), Twentieth century sea level: An enigma, Proceedings of the National Academy of Sciences, 99(10), 6550-6555, https://doi.org/10.1073/pnas.092704599.
31. Olson, P. (2016), Mantle control of the geodynamo: Consequences of top-down regulation, Geochemistry, Geophysics, Geosystems, 17(5), 1935-1956, https://doi.org/10.1002/2016gc006334.
32. Owens, M. J., K. G. McCracken, M. Lockwood, and L. Barnard (2015), The heliospheric Hale cycle over the last 300 years and its implications for a "lost" late 18th century solar cycle, Journal of Space Weather and Space Climate, 5, A30, https://doi.org/10.1051/swsc/2015032.
33. Parker, A., and C. D. Ollier (2015), Is there a Quasi-60 years’ Oscillation of the Arctic Sea Ice Extent?, Journal of Geography, Environment and Earth Science International, 2(2), 77-94, https://doi.org/10.9734/JGEESI/2015/16694.
34. Philander, S. G. H. (1973), Equatorial undercurrent: Measurements and theories, Reviews of Geophysics, 11(3), 513-570, https://doi.org/10.1029/rg011i003p00513.
35. Rivin, Y. R. (1998), 22-year cycle of geomagnetic activity, International journal of geomagnetism and aeronomy, 1(2), 111-116.
36. Savinykh, V. V., N. F. Elansky, and A. N. Gruzdev (2021), Interannual variations and long-term trends in total ozone over the North Caucasus, Atmospheric Environment, 251, 118,252, https://doi.org/10.1016/j.atmosenv.2021.118252.
37. Scafetta, N., F. Milani, and A. Bianchini (2020), A 60-Year Cycle in the Meteorite Fall Frequency Suggests a Possible Interplanetary Dust Forcing of the Earth’s Climate Driven by Planetary Oscillations, Geophysical Research Letters, 47(18), https://doi.org/10.1029/2020gl089954.
38. Stefan, C., V. Dobrica, and C. Demetrescu (2017), Core surface sub-centennial magnetic flux patches: characteristics and evolution, Earth, Planets and Space, 69(1), https://doi.org/10.1186/s40623-017-0732-1.
39. Thomson, R. E., and W. J. Emery (2014), Data Analysis Methods in Physical Oceanography, 716 pp., Elsevier, Amsterdam, https://doi.org/10.1016/c2010-0-66362-0.
40. Yang, Y., and X. Song (2020), Origin of temporal changes of inner-core seismic waves, Earth and Planetary Science Letters, 541, 116,267, https://doi.org/10.1016/j.epsl.2020.116267.
41. Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little (2019), A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts, Reviews of Geophysics, 57(2), 316-375, https://doi.org/10.1029/2019rg000644.
42. Zotov, L., C. Bizouard, and C. K. Shum (2016), A possible interrelation between Earth rotation and climatic variability at decadal time-scale, Geodesy and Geodynamics, 7(3), 216-222, https://doi.org/10.1016/j.geog.2016.05.005.