The anticyclonic quasi-permanent Lofoten vortex is a strong dynamic formation in the center of the Lofoten Basin in the Norwegian Sea. We used the oceanic reanalysis data GLORYS12V1. We analyzed a seasonal distribution of the relative and potential vorticity, as well as the orbital velocities and the potential density in the Lofoten vortex. The main points of the potential vorticity calculating are considered. The values of the Lofoten vortex volume, the horizontal dimension (the diameter) as well as the vertical scale for the period from 2000 to 2019 are obtained, as well as the method for estimates of these characteristics is described in detail. It was shown that the intensification of the vortex occurs in the summer, and its relaxation -- in the winter.
North Atlantic, Norwegian sea, Lofoten basin, Lofoten vortex, potential vorticity, relative vorticity
1. Alexeev, V. A., Ivanov, V. V, Repina, I. A., Lavrova, O. Y., Stanichny, S. V (2016), Convective structures in the Lofoten Basin based on satellite and Argo data, Izvestiya, Atmospheric and Oceanic Physics, 52(9), 1064-1077. https://doi.org/10.1134/S0001433816090036; ; EDN: https://elibrary.ru/WIOPVP
2. Allen, J. T., Smeed, D. A. (1996), Potential Vorticity and Vertical Velocity at the Iceland-Færoes Front, Journal of Physical Oceanography, 26(12), 2611-2634. https://doi.org/10.1175/1520-0485(1996)026<2611:PVAVVA>2.0.CO;2
3. Amante, C., Eakins, B. W. (2009), ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. Boulder: NOAA, National Geophysical Data Center. https://doi.org/10.7289/V5C8276M
4. Bashmachnikov, I. L., Belonenko, T. V, Kuibin, P. A. (2017), The application of the theory of the columnar Q-vortex with helical structure to the description of the dynamic characteristics of the Lofoten vortex of the Norwegian sea (in Russian), Vestnik Sankt-Peterburgskogo Universiteta. Nauki o Zemle, 62(3), 221-236. https://doi.org/10.21638/11701/spbu07.2017.301; ; EDN: https://elibrary.ru/YMQEWS
5. Bashmachnikov, I. L., Neves, F., Calheiros, T., Carton, X. (2015), Properties and pathways of Mediterranean water eddies in the Atlantic, Progress in Oceanography, 137, 149-172. https://doi.org/10.1016/j.pocean.2015.06.001; ; EDN: https://elibrary.ru/UPIKIN
6. Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V, Volkov, D. L., Isachsen, P. E., Carton, X. (2017), On the vertical structure and stability of the Lofoten vortex in the
7. Norwegian Sea, Deep-Sea Research Part I: Oceanographic Research Papers, 128, 1-27. https://doi.org/10.1016/j.dsr.2017.08.001; ; EDN: https://elibrary.ru/XOVZRM
8. Belonenko, T. V, Bashmachnikov, I. L., Koldunov, A. V, Kuibin, P. A. (2017), On the vertical velocity component in the mesoscale Lofoten vortex of the Norwegian Sea, Izvestiya, Atmospheric and Oceanic Physics, 53(6), 641-649. https://doi.org/10.1134/S0001433817060032; ; EDN: https://elibrary.ru/XXONYL
9. Belonenko, T. V, Koldunov, A. V, Sentyabov, E. V, Karsakov, A. L. (2018), Thermohaline structure of the Lofoten vortex in the Norwegian sea based on field research and hydrodynamic modeling (in Russian), Vestnik Sankt-Peterburgskogo Universiteta. Nauki o Zemle, 63(4), 502-519. https://doi.org/10.21638/spbu07.2018.406; ; EDN: https://elibrary.ru/VUOTJG
10. Belonenko, T. V, Travkin, V. S., Koldunov, A. V, Volkov, D. L. (2021), Topographic experiments over dynamical processes in the Norwegian Sea, Russian Journal of Earth Sciences, 21, ES1006. https://doi.org/10.2205/2020ES000747; ; EDN: https://elibrary.ru/SUIIED
11. Belonenko, T. V, Volkov, D. L., Norden, I. E., Ozhigin, V. K. (2014), Circulation of waters in the Lofoten Basin of the Norwegian Sea (in Russian), Vestnik Sankt-Peterburgskogo Universiteta. Nauki o Zemle, 7(2), 108-121.; EDN: https://elibrary.ru/SFMONR
12. Bloshkina, E. V, Ivanov, V. V (2016), Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution (in Russian), Proceedings of the Hydrometeorological Research Center of the Russian Federation, 361, 146-168.
13. Bosse, A., Fer, I., Lilly, J. M., Søiland, H. (2019), Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy, Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-49599-8; ; EDN: https://elibrary.ru/JHMLHD
14. Bosse, A., Fer, I., Søiland, H., Rossby, T. (2018), Atlantic Water Transformation Along Its Poleward Pathway Across the Nordic Seas, Journal of Geophysical Research: Oceans, 123(9), 6428-6448. https://doi.org/10.1029/2018JC014147; ; EDN: https://elibrary.ru/CAWSYY
15. Bryan, K. (1987), Potential vorticity in models of the ocean circulation, Quarterly Journal of the Royal Meteorological Society, 113(477), 713-734. https://doi.org/10.1002/qj.49711347703
16. Bucher, I. (2021), Circle fit, . MATLAB Central File Exchange. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit
17. Catling, D. C. (2015), Planetary Atmospheres, In G. Schubert (Ed.), Treatise on Geophysics (2nd ed., pp. 429-472). Oxford: Elsevier.
18. Chelton, D. B., de Szoeke, R. A., Schlax, M. G. (1998), Geographical Variability of the First Baroclinic Rossby Radius of Deformation, Journal of Physical Oceanography, 28, 433-460. Retrieved from papers3://publication/uuid/1F608895-1302-404E-927E-D83F5E67CDDB
19. Dugstad, J. S., Isachsen, P. E., Fer, I. (2021), The mesoscale eddy field in the Lofoten Basin from
20. high-resolution Lagrangian simulations, Ocean Science, 17(3), 651-674. https://doi.org/10.5194/os-17-651-2021
21. Ertel, H. (1942a), Ein neuer hydrodynamischer Erhaltungssatz, Die Naturwissenschaften, 30, 543-544.; DOI: https://doi.org/10.1007/bf01475602; EDN: https://elibrary.ru/SFHCAD
22. Ertel, H. (1942b), Ein neuer hydrodynamischer Wirbelsatz, Meteorologische Zeitschrift, 59, 277-281.
23. Ertel, H. (1942c), Über hydrodynamischer Wirbelsätze, Physikalische Zeitschrift Leipzig, 43, 526-529.
24. Fedorov, A. M., Bashmachnikov, I. L., Belonenko, T. V (2019), Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling (in Russian), Vestnik Sankt-Peterburgskogo Universiteta. Nauki o Zemle, 64(3), 491-511. https://doi.org/10.21638/spbu07.2019.308; ; EDN: https://elibrary.ru/UVJSLP
25. Fedorov, A. M., Belonenko, T. V (2020), Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database, Russian Journal of Earth Sciences, 20, ES2002. https://doi.org/10.2205/2020ES000694; ; EDN: https://elibrary.ru/TEHTJD
26. Fedorov, A. M., Raj, R. P., Belonenko, T. V, Novoselova, E. V, Bashmachnikov, I. L., Johannessen, J. A., Pettersson, L. H. (2021), Extreme Convective Events in the Lofoten Basin, Pure and Applied Geophysics. https://doi.org/10.1007/s00024-021-02749-4; ; EDN: https://elibrary.ru/TGDPEA
27. Fer, I., Bosse, A., Ferron, B., Bouruet-Aubertot, P. (2018), The dissipation of kinetic energy in the Lofoten Basin Eddy, Journal of Physical Oceanography, 48(6), 1299-1316. https://doi.org/10.1175/JPO-D-17-0244.1; ; EDN: https://elibrary.ru/VGXHES
28. Gordeeva, S. M., Zinchenko, V. A., Koldunov, A. V, Raj, R. P., Belonenko, T. V (2020), Statistical analysis of long-lived mesoscale eddies in the Lofoten basin from satellite altimetry, Advances in Space Research, 68(2), 364-377. https://doi.org/10.1016/j.asr.2020.05.043; ; EDN: https://elibrary.ru/LFUFPT
29. Hua, B. L., Ménesguen, C., Le Gentil, S., Schopp, R., Marsset, B., Aiki, H. (2013), Layering and turbulence surrounding an anticyclonic oceanic vortex: in situ observations and quasi-geostrophic numerical simulations, Journal of Fluid Mechanics, 731, 418-442. https://doi.org/10.1017/jfm.2013.369
30. Ivanov, V. V, Korablev, A. A. (1995a), Dynamics of an intrapycnocline lens in the Norwegian Sea (in Russian), Russian Meteorology and Hydrology, (10), 32-37.
31. Ivanov, V. V, Korablev, A. A. (1995b), Formation and regeneration of the pycnocline lens in the Norwegian Sea (in Russian), Russian Meteorology and Hydrology, (9), 62-69.
32. Köhl, A. (2007), Generation and stability of a quasi-permanent vortex in the Lofoten Basin, Journal of Physical Oceanography, 37(11), 2637-2651. https://doi.org/10.1175/2007JPO3694.1
33. Koszalka, I., LaCasce, J. H., Andersson, M., Orvik, K. A., Mauritzen, C. (2011), Surface circulation in the Nordic Seas from clustered drifters, Deep-Sea Research Part I: Oceanographic Research Papers, 58(4), 468-485. https://doi.org/10.1016/j.dsr.2011.01.007; ; EDN: https://elibrary.ru/ONCERT
34. Kushner, P. J. (2003), Circulation, Vorticity, and Potential Vorticity, In T. D. Potter & B. R. Colman (Eds.), Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements (pp. 21-38). Hoboken: John Wiley&Sons, Inc.
35. Nilsen, J. E. Ø., Falck, E. (2006), Variations of mixed layer properties in the Norwegian Sea for the period 1948-1999, Progress in Oceanography, 70(1), 58-90. https://doi.org/10.1016/j.pocean.2006.03.014; ; EDN: https://elibrary.ru/MELPWZ
36. Novoselova, E. V, Belonenko, T. V (2020), Isopycnal advection in the Lofoten Basin of the Norvegian Sea (in Russian), Fundamentalnaya i Prikladnaya Gidrofizika, 13(3), 56-67. https://doi.org/10.7868/S2073667320030041; ; EDN: https://elibrary.ru/YJDVQC
37. Novoselova, E. V, Belonenko, T. V, Gnevyshev, V. G. (2020), The baroclinic Rossby radius in the Nordic seas (in Russian), Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 17(5), 228-240. https://doi.org/10.21046/2070-7401-2020-17-5-228-240; ; EDN: https://elibrary.ru/NARAVM
38. Pidcock, R., Martin, A., Allen, J., Painter, S. C., Smeed, D. A. (2013), The spatial variability of vertical velocity in an Iceland basin eddy dipole, Deep-Sea Research Part I: Oceanographic Research Papers, 72, 121-140. https://doi.org/10.1016/j.dsr.2012.10.008
39. Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., Halo, I. (2015), The Lofoten Vortex of the Nordic Seas, Deep-Sea Research Part I: Oceanographic Research Papers, 96, 1-14. https://doi.org/10.1016/j.dsr.2014.10.011; ; EDN: https://elibrary.ru/USNUUN
40. Raj, R. P., Halo, I., Chatterjee, S., Belonenko, T. V, Bakhoday-Paskyabi, M., Bashmachnikov, I. L., … Xie, J. (2020), Interaction Between Mesoscale Eddies and the Gyre Circulation in the Lofoten Basin, Journal of Geophysical Research: Oceans, 125(7), e2020JC016102. https://doi.org/10.1029/2020JC016102; ; EDN: https://elibrary.ru/RNOEXC
41. Richards, C. G., Straneo, F. (2015), Observations of water mass transformation and eddies in the Lofoten basin of the Nordic seas, Journal of Physical Oceanography, 45(6), 1735-1756. https://doi.org/10.1175/JPO-D-14-0238.1; ; EDN: https://elibrary.ru/VEWUGV
42. Rossby, C.-G. (1936), Dynamics of steady ocean currents in the light of experimental fluid mechanics (Vol. 5). Massachusetts: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/1088
43. Rossby, C.-G. (1938), On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II, Journal of Marine Research, 1(3), 239-263.
44. Rossby, C.-G. (1940), Planetary flow patterns in the atmosphere, Quarterly Journal of the Royal
45. Meteorological Society, 66, 68-87. Retrieved from http://www.aos.princeton.edu/WWWPUBLIC/gkv/history/Rossby-planflowQJ40.pdf%5Cnhttp://www.aos.princeton.edu/WWWPUBLIC/gkv/history/general.html
46. Rossby, T., Ozhigin, V. K., Ivshin, V., Bacon, S. (2009), An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin, Deep-Sea Research Part I: Oceanographic Research Papers, 56(11), 1955-1971. https://doi.org/10.1016/j.dsr.2009.07.005; ; EDN: https://elibrary.ru/MWZRFN
47. Rossby, T., Prater, M. D., Søiland, H. (2009), Pathways of inflow and dispersion of warm waters in the Nordic seas, Journal of Geophysical Research: Oceans, 114(4), 1-17. https://doi.org/10.1029/2008JC005073
48. Samelson, R. M. (2003), Rossby, Ertel, and potential vorticity. Corvallis: Oregon State University.
49. Sandalyuk, N. V, Bosse, A., Belonenko, T. V (2020), The 3-D Structure of Mesoscale Eddies in the Lofoten Basin of the Norwegian Sea: A Composite Analysis From Altimetry and In Situ Data, Journal of Geophysical Research: Oceans, 125(10), e2020JC016331. https://doi.org/10.1029/2020JC016331; ; EDN: https://elibrary.ru/VZRVDG
50. Santeva, E. K., Bashmachnikov, I. L., Sokolovskiy, M. A. (2021), On the Stability of the Lofoten Vortex in the Norwegian Sea, Oceanology, 61(3), 308-318. https://doi.org/10.1134/S0001437021030127; ; EDN: https://elibrary.ru/OWZYWC
51. Schubert, W., Ruprecht, E., Hertenstein, R., Ferreira, R. N., Taft, R., Rozoff, C., … Kuo, H. C. (2004), English translations of twenty-one of Ertel’s papers on geophysical fluid dynamics, Meteorologische Zeitschrift, 13(6), 527-576. https://doi.org/10.1127/0941-2948/2004/0013-0527
52. Smilenova, A., Gula, J., Le Corre, M., Houpert, L., Reecht, Y. (2020), A Persistent Deep Anticyclonic Vortex in the Rockall Trough Sustained by Anticyclonic Vortices Shed From the Slope Current and Wintertime Convection, Journal of Geophysical Research: Oceans, 125(10), 1-27. https://doi.org/10.1029/2019JC015905; ; EDN: https://elibrary.ru/DSBWMA
53. Smith, R. K. (2003), Potential Vorticity, . Retrieved from https://www.meteo.physik.uni-muenchen.de/lehre/roger/Adm_Lectures/PV.pdf
54. Søiland, H., Chafik, L., Rossby, T. (2016), On the long-term stability of the Lofoten Basin Eddy, Journal of Geophysical Research: Oceans, 121(7), 4438-4449. https://doi.org/10.1002/2016JC011726; ; EDN: https://elibrary.ru/WPQZKB
55. Søiland, H., Rossby, T. (2013), On the structure of the Lofoten Basin Eddy, Journal of Geophysical Research: Oceans, 118(9), 4201-4212. https://doi.org/10.1002/jgrc.20301; ; EDN: https://elibrary.ru/QCCXMD
56. Spall, M. A. (2010), Non-local topographic influences on deep convection: An idealized model
57. for the Nordic Seas, Ocean Modelling, 32(1-2), 72-85. https://doi.org/10.1016/j.ocemod.2009.10.009
58. Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.) (2001), Encyclopedia of ocean sciences. Academic Press. https://doi.org/10.1029/2002eo000342
59. Stewart, R. H. (2008), Introduction to Physical Oceanography. Texas: Texas A&M University.
60. Talley, L. D., Pickard, G. L., Emery, W. J., Swift, J. H. (2011), Dynamical Processes for Descriptive Ocean Circulation, In Descriptive Physical Oceanography (pp. 187-221). Boston: Elsevier Ltd. https://doi.org/10.1016/b978-0-7506-4552-2.10007-1
61. Travkin, V. S., Belonenko, T. V (2019), Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data, Russian Journal of Earth Sciences, 19, ES5004. https://doi.org/10.2205/2019ES000676; ; EDN: https://elibrary.ru/RSYXYQ
62. Travkin, V. S., Belonenko, T. V (2020), Mixed layer depth in winter convection in the Lofoten Basin in the Norwegian Sea and assessment methods (in Russian), Hydrometeorology and Ecology, Proceedings of the Russian State Hydrometeorological University, 59, 67-83. https://doi.org/10.33933/2074-2762-2020-59-67-83; ; EDN: https://elibrary.ru/IRDOCX
63. Trodahl, M., Isachsen, P. E., Lilly, J. M., Nilsson, J., Kristensen, N. M. (2020), The regeneration of the lofoten vortex through vertical alignment, Journal of Physical Oceanography, 50(9), 2689-2711. https://doi.org/10.1175/JPO-D-20-0029.1; ; EDN: https://elibrary.ru/FOUEPJ
64. Vallis, G. K. (2006), Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. New York: Cambridge University Press. Retrieved from www.cambridge.org/9780521849692
65. Voet, G., Quadfasel, D., Mork, K. A., Søiland, H. (2010), The mid-depth circulation of the Nordic Seas derived from profiling float observations, Tellus, Series A: Dynamic Meteorology and Oceanography, 62(4), 516-529. https://doi.org/10.1111/j.1600-0870.2010.00444.x; ; EDN: https://elibrary.ru/PIUKLF
66. Volkov, D. L., Belonenko, T. V, Foux, V. R. (2013), Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophysical Research Letters, 40(4), 738-743. https://doi.org/https://doi.org/10.1002/grl.50126; ; EDN: https://elibrary.ru/RFBUVP
67. Volkov, D. L., Kubryakov, A. A., Lumpkin, R. (2015), Formation and variability of the Lofoten basin vortex in a high-resolution ocean model, Deep-Sea Research Part I: Oceanographic Research Papers, 105, 142-157. https://doi.org/10.1016/j.dsr.2015.09.001; ; EDN: https://elibrary.ru/VABFTX
68. Winkler, R., Zwatz-Meise, V. (2001), Manual of synoptic satellite meteorology. Conceptual models and case studies. Version 6.8, . Retrieved from http://www.zamg.ac.at/docu/Manual
69. Ypma, S. L., Georgiou, S., Dugstad, J. S., Pietrzak, J. D., Katsman, C. A. (2020), Pathways and Water Mass Transformation Along and Across the Mohn-Knipovich Ridge in the Nordic Seas, Journal of Geophysical Research: Oceans, 125, e2020JC016075.
70. https://doi.org/10.1029/2020JC016075
71. Yu, L.-S., Bosse, A., Fer, I., Orvik, K. A., Bruvik, E. M., Hessevik, I., Kvalsund, K. (2017), The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, Journal of Geophysical Research: Oceans, 122(8), 6814-6834. https://doi.org/10.1002/2017JC012982; ; EDN: https://elibrary.ru/YJSYGO
72. Zhmur, V. V, Novoselova, E. V, Belonenko, T. V (2021a), Features of the formation of the density field in the mesoscale eddies of the Lofoten basin. Part 1, Oceanology.
73. Zhmur, V. V, Novoselova, E. V, Belonenko, T. V (2021b), Potential vorticity in the ocean: Ertel and Rossby approaches with estimates for the Lofoten vortex, Izvestiya, Atmospheric and Oceanic Physics, 57(6), 632-641. https://doi.org/10.1134/S0001433821050157; ; EDN: https://elibrary.ru/GZIQGC
74. Zhmur, V. V, Novoselova, E. V, Belonenko, T. V (2022), Features of the formation of the density field in the mesoscale eddies of the Lofoten basin. Part 2, Oceanology.
75. Zinchenko, V. A., Gordeeva, S. M., Sobko, Y. V, Belonenko, T. V (2019), Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry, Fundamentalnaya i Prikladnaya Gidrofizika, 12(3), 46-54. https://doi.org/10.7868/S2073667319030067; ; EDN: https://elibrary.ru/UEVKHC