NEW CONSTRAINTS OF INTERIOR FARS SEDIMENTARY BASIN ANALYSIS DURING ASMARI FORMATION (OLIGOCENE-LOWER MIOCENE) DEPOSITION, SOUTH IRAN
Аннотация и ключевые слова
Аннотация (русский):
Interior Fars region is an important geological province of Zagros basin due to historical events. The present paper focused on the time span of the Asmari deposition (Oligo-Lower Miocene) in Fars area bounded by Kazerun and Nezamabad faults. The studied samples of Asmari Formation were collected from 3 different stratigraphic sections A, B and C. The area is discussed in view of microfacies variation, sequence stratigraphy and environmental factors such as diagenetic processes and sea level changes. Microscopic studies led to identification 13 carbonate facies in this area. The results showed that the Asmari Formation has been deposited in a carbonate shelf in 5 sedimentary sub-environments including open sea, bar, lagoon, shoal and tidal flat. Basin changes were also compared with global sea level changes. Sequential stratigraphic evidence showed that the Asmari Formation consists of two sedimentary sequences of third order. The unconformity in the lower boundary of Asmari Formation with Jahrom Formation in sections-B and C can be ascribed to the result of Pyrenean orogenic phase activity in this area. The Asmari Formation in this area has been undergone extensively by diagenetic processes. Micriticization, dolomitization, cementation, hematitization, stylolitization, neomorphism and dissolution are among the important and noteworthy of diagenetic processes. The intensity of each process is a function of facies characteristics (fabric control). Microfacies data and sea level changes curve in local (the area), regional and global scales revealed that these facies are more correlated to the local sea level variation than others. The present study resulted to new main points related to the Fars basin evolution. Reactivation of faults (such as Kazerun and Nezamabad), regional sea level changes and Alpine orogenic phases impact (i.e., Pyrenean phase) have involved a major role in sedimentary facies distribution and basin evolution.

Ключевые слова:
Asmari Formation, Interior Fars, Pyrenean phase, sea level changes
Список литературы

1. Adabi, M. H., and C. P. Rao (1991), Petrographic and geochemical evidence for original aragonite mineralogy of upper Jurassic carbonates (Mozduran formation), Sarakhs area, Iran, Sedimentary Geology, 72(3–4), 253–267, https://doi.org/10.1016/0037-0738(91)90014-5.

2. Adabi, M. H., A. Zohdi, A. Ghabeishavi, and H. Amiri-Bakhtiyar (2008), Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran, Facies, 54(4), 499–512, https://doi.org/10.1007/s10347-008-0151-7.

3. Aghaei, A., A. Mahboubi, R. M. Harami, M. Nadjafi, and G. J. Chakrapani (2014), Carbonate diagenesis of the upper Jurassic successions in the west of Binalud - Eastern Alborz (NE Iran), Journal of the Geological Society of India, 83(3), 311–328, https://doi.org/10.1007/s12594-014-0044-z.

4. Ahmad, A. H. M., and G. M. Bhat (2006), Petrofacies, provenance and diagenesis of the dhosa sandstone member (Chari Formation) at Ler, Kachchh sub-basin, Western India, Journal of Asian Earth Sciences, 27(6), 857–872, https://doi.org/10.1016/j.jseaes.2005.08.005.

5. Ahmadi, V., A. Zavarei, A. Motaharian, and M. Munt (2011), Gastropods identification of Asmari Formation in Shamsabad and Runiz stratigraphic sections in south-east of Shiraz (Fars Province), Scientific Quaternary Journal of Geosciences, 21(8), 95–102, https://doi.org/10.22071/GSJ.2011.54445.

6. Akhzari, S., A. Seyrafian, and H. Vaziri-Moghaddam (2015), Oligocene microfacies and sedimentary environment of the Asmari Formation at northwest of Deris village, west of Fars province and thickness, age and sedimentary environment correlation with three other sections in Zagros Basin, Iranian Journal of Petroleum Geology, 5(9), 43–58 (in Persian).

7. Alexandersson, T. (1972), Micritization of carbonate particles: processes of precipitation and dissolution in modern shallow-marine sediments, Bulletin of the Geological Institution of the University of Upsala, 3(7), 201–236.

8. Allahkarampour Dill, M., A. Seyrafian, and H. Vaziri-Moghaddam (2010), The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy, Carbonates and Evaporites, 25(2), 145–160, https://doi.org/10.1007/s13146-010-0021-6.

9. Amirshahkarami, M., H. Vaziri-Moghaddam, and A. Taheri (2007a), Sedimentary facies and sequence stratigraphy of the Asmari Formation at Chaman-Bolbol, Zagros Basin, Iran, Journal of Asian Earth Sciences, 29(5–6), 947–959, https://doi.org/10.1016/j.jseaes.2006.06.008.

10. Amirshahkarami, M., H. Vaziri-Moghaddam, and A. Taheri (2007b), Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in Southwest Iran, Historical Biology, 19(2), 173–183.

11. Amirshahkarami, M., A. Ghabishavi, and A. Rahmani (2010), Biostratigraphy and paleoenvironment of the larger benthic foraminifera in wells sections of the Asmari Formation from the Rag-e-Safid Oil Field, Zagros Basin, Southwest Iran, Stratigraphy and Sedimentology Researches, 26, 63–84.

12. Arzaghi, S., and M. Afghah (2014), Diagenetic aspects of the Lower Paleocene Sachun Formation carbonates, Zagros Basin, southwestern Iran, Journal of Earth Science, 25(5), 884–894, https://doi.org/10.1007/s12583-014-0480-0.

13. Bahrami, M. (2009), Stratigraphy, microfacies and sedimentary environments of Asmari Formation at Tang-e-Bolhayat, north of Kazerun, Fars Province, Iran, Geophysical Research Abstracts, 11(EGU2009-4728).

14. Bathurst, R. G. C. (1966), Boring algae, micrite envelopes and lithification of molluscan biosparites, Geological Journal, 5(1), 15–32, https://doi.org/10.1002/gj.3350050104.

15. Bathurst, R. G. C. (1972), Neomorphic Processes in Diagenesis, in Carbonate Sediments and their Diagenesis, chap. 12, pp. 475–516, Elsevier, https://doi.org/10.1016/s0070-4571(08)70906-3.

16. Beavington-Penney, S. J., V. Paul Wright, and A. Racey (2005), Sediment production and dispersal on foraminiferadominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia, Sedimentology, 52(3), 537–569, https://doi.org/10.1111/j.1365-3091.2005.00709.x.

17. Bordenave, M. L., and J. A. Hegre (2005), The influence of tectonics on the entrapment of oil in the dezful embayment, Zagros foldbelt, Iran, Journal of Petroleum Geology, 28(4), 339–368, https://doi.org/10.1111/j.1747-5457.2005.tb00087.x.

18. Brigaud, B., Ch. Durlet, J.-F. Deconinck, B. Vincent, J. Thierry, and A. Trouiller (2009), The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France), Sedimentary Geology, 222(3–4), 161–180, https://doi.org/10.1016/j.sedgeo.2009.09.002.

19. Burchette, T. P., and V. P. Wright (1992), Carbonate ramp depositional systems, Sedimentary Geology, 79(1–4), 3–57, https://doi.org/10.1016/0037-0738(92)90003-A.

20. Carrera, M. F. L. (2018), Diagenesis characterization and modeling of carbonate rocks: application to Mississippian lime (Oklahoma, United States of America), phdthesis.

21. Catuneanu, O. (2002), Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls, Journal of African Earth Sciences, 35(1), 1–43, https://doi.org/10.1016/S0899-5362(02)00004-0.

22. Catuneanu, O., V. Abreu, J. P. Bhattacharya, M. D. Blum, R. W. Dalrymple, et al. (2009a), Towards the standardization of sequence stratigraphy, Earth-Science Reviews, 92(1–2), 1–33, https://doi.org/10.1016/j.earscirev.2008.10.003.

23. Catuneanu, O., V. Abreu, J. P. Bhattacharya, M. D. Blum, R. W. Dalrymple, et al. (2009b), Reply to the comments of W. Helland-Hansen on "Towards the standardization of sequence stratigraphy" by Catuneanu et al. [Earth-Sciences Review 92(2009)1-33], Earth-Science Reviews, 94(1–4), 98–100, https://doi.org/10.1016/j.earscirev.2009.02.004.

24. Catuneanu, O., W. E. Galloway, Ch. G. S. T. C. Kendall, A. D. Miall, H. W. Posamentier, A. Strasser, and M. E. Tucker (2011), Sequence Stratigraphy: Methodology and Nomenclature, Newsletters on Stratigraphy, 44(3), 173–245, https://doi.org/10.1127/0078-0421/2011/0011.

25. Choquette, Ph. W., and N. P. James (1987), Diagenesis #12. Diagenesis in Limestones – 3. The Deep Burial Environment, Geoscience Canada, 14(1), 3–35.

26. Choquette, Ph. W., and L. C. Pray (1970), Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates, AAPG Bulletin, 54, 207–250.

27. Christie-Blick, N. (1991), Onlap, offlap, and the origin of unconformity-bounded depositional sequences, Marine Geology, 97(1–2), 35–56, https://doi.org/10.1016/0025-3227(91)90018-Y.

28. Claes, S., F. H. Nader, and S. Youssef (2018), Coupled experimental/numerical workflow for assessing quantitative diagenesis and dynamic porosity/permeability evolution in calcite-cemented sandstone reservoir rocks, Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 73, 36, https://doi.org/10.2516/ogst/2018027.

29. Coniglio, M., R. Frizzell, and B. R. Pratt (2004), Reef-capping laminites in the Upper Silurian carbonate-to-evaporite transition, Michigan Basin, south-western Ontario, Sedimentology, 51(3), 653–668, https://doi.org/10.1111/j.1365-3091.2004.00641.x.

30. Dehghanian, M. S., K. Khosrotehrani, M. Afghah, and F. Keshani (2012), Microfacies Study of Asmari Formation in the Northwest and Southeast of Shiraz, Iran, Advances in Environmental Biology, 6(2), 556–563.

31. Dehghanian, M. S., B. Asgari Pirbalouti, and H. R. Masoumi (2013), Oligocene-Miocene Microfacies Study of Asmari Formation (NWSE of Shiraz, Iran), Iranian Journal of Earth Sciences, 5, 66–73.

32. Dickson, J. A. D. (1978), Neomorphism and recrystallization, in Sedimentology. Encyclopedia of Earth Science, pp. 753–757, Springer Berlin Heidelberg, https://doi.org/10.1007/3-540-31079-7_143.

33. Dunham, R. J. (1962), Classification of Carbonate Rocks According to Depositional Texture, in Classification of Carbonate Rocks-A Symposium, pp. 108–121, American Association of Petroleum Geologists.

34. Ehrenberg, S. N., N. A. H. Pickard, G. V. Laursen, S. Monibi, Z. K. Mossadegh, T. A. Svånå, A. A. M. Aqrawi, J. M. McArthur, and M. F. Thirlwall (2007), Strontium isotope stratigraphy of the Asmari Formation (Oligocene-Lower Miocene), SW Iran, Journal of Petroleum Geology, 30(2), 107–128, https://doi.org/10.1111/j.1747-5457.2007.00107.x.

35. El-Saiy, A. K., and B. R. Jordan (2007), Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates, Journal of Asian Earth Sciences, 31(1), 35–43, https://doi.org/10.1016/j.jseaes.2007.03.004.

36. Flügel, E. (2010), Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 984 pp., Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-03796-2.

37. Garcia-Pichel, F. (2006), Plausible mechanisms for the boring on carbonates by microbial phototrophs, Sedimentary Geology, 185(3–4), 205–213, https://doi.org/10.1016/j.sedgeo.2005.12.013.

38. Geert, K., A. M. Afifi, S. A. Al-Hajri, and H. J. Droste (2001), Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate, GeoArabia, 6(3), 407–442, https://doi.org/10.2113/geoarabia0603407.

39. Grabowski, G. J., and I. O. Norton (1995), Tectonic controls on the stratigraphic architecture and hydrocarbon systems of the Arabian Plate, in SEG Technical Program Expanded Abstracts 1995, pp. 413–430, Society of Exploration Geophysicists, https://doi.org/10.1190/1.1887546.

40. Haidari, Kh., A. Amini, M. AleAli, A. Solgi, and J. Jafari (2020), Distribution pattern of Ahwaz sandstone and Kalhur evaporite members of Asmari Formation in Dezful Embayment and Abadan plain, a basis for stratigraphic traps studies, Geopersia, 10(1), 53–63, https://doi.org/10.22059/geope.2019.275999.648463

41. Hakimzadeh, S., and A. Seyrafian (2008), Late oligocene-early miocene benthic foraminifera and biostratigraphy of the Asmari Formation south Yasuj, north-central Zagros basin, Iran, Carbonates and Evaporites, 23(1), 1–10, https://doi.org/10.1007/BF03176247.

42. Haq, B. U., and V. Al-Qahtani (2005), Phanerozoic cycles of sea-level change on the Arabian Platform, GeoArabia, 10(2), 36.

43. Haq, B. U., and V. Eysinga (1998), A geological time table.

44. Haq, B. U., J. Hardenbol, and P. R. Vail (1987), Chronology of Fluctuating Sea Levels Since the Triassic, Science, 235(4793), 1156–1167, https://doi.org/10.1126/science.235.4793.1156.

45. Haq, B. U., J. Hardenbol, and P. R. Vail (1988), Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Sea-Level Changes - An Integrated Approach, pp. 71–108, SEPM (Society for Sedimentary Geology), https://doi.org/10.2110/pec.88.01.0071.

46. Heckel, Ph. H. (1983), Diagenetic Model For Carbonate Rocks In Midcontinent Pennsylvanian Eustatic Cyclothems, SEPM Journal of Sedimentary Research, 53, https://doi.org/10.1306/212f82b0-2b24-11d7-8648000102c1865d.

47. Hosa, A., and R. Wood (2020), Order of diagenetic events controls evolution of porosity and permeability in carbonates, Sedimentology, 67(6), 3042–3054, https://doi.org/10.1111/sed.12733.

48. Hosseinpour, M., Z. Maleki, and M. leali (2017), Evaluation of Hydrocarbon Potential in the Jahrom Area, Interior Fars, Zagros, Open Journal of Geology, 07(03), 429–442, https://doi.org/10.4236/ojg.2017.73029.

49. Hosseinpour, M., M. Arian, Z. Maleki, and M. Ghorashi (2019), Fractal analysis of the effect of the Nezamabad fault on the lineaments related to fold: A case study of the Khaftar anticline, Zagros, Iran, Tectonics, 10, 1–14.

50. Hughes, G. W., and Z. R. Beydoun (1992), The Red Sea-Gulf of Aden: biostratigraphy, lithostratigraphy and palaeoenvironments, Journal of Petroleum Geology, 15(s3), 135–156, https://doi.org/10.1111/j.1747-5457.1992.tb00959.x.

51. Hughes, G. W., and J. Filatoff (1995), New biostratigraphic constraints on Saudi Arabian Red Sea pre- and syn-rift sequences, in Middle East petroleum geosciences, pp. 517–528, Gulf Petrolink.

52. Hughes, G. W., and R. S. Johnson (2005), Lithostratigraphy of the Red Sea Region, GeoArabia, 10(3), 49–126, https://doi.org/10.2113/geoarabia100349.

53. Hughes, G. W., O. Varol, and Z. R. Beydoun (1991), Evidence for Middle Oligocene rifting of the Gulf of Aden and for Late Oligocene rifting of the southern Red Sea, Marine and Petroleum Geology, 8(3), 354–358, https://doi.org/10.1016/0264-8172(91)90088-I.

54. Hughes, G. W., S. Abdine, and M. H. Girgis (1992), Miocene biofacies development and geological history of the Gulf of Suez, Egypt, Marine and Petroleum Geology, 9(1), 2–28, https://doi.org/10.1016/0264-8172(92)90002-V.

55. Hughes, G. W., D. J. Grainger, A.-J. Abu-Bshait, and M. J. Abdul-Rahman (1999), Lithostratigraphy and Depositional History of Part of the Midyan Region, Northwestern Saudi Arabia, GeoArabia, 4(4), 503–542, https://doi.org/10.2113/geoarabia0404503.

56. Hunt, D., and M. E. Tucker (1992), Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level’fall, Sedimentary Geology, 81(1–2), 1–9, https://doi.org/10.1016/0037-0738(92)90052-S.

57. Hunt, D., and M. E. Tucker (1995), Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall-reply, Sedimentary Geology, 95(1–2), 147–160, https://doi.org/10.1016/0037-0738(94)00123-C

58. Karami, S., V. Ahmadi, H. Sarooe, and M. Bahrami (2020), Facies analysis and depositional environment of the OligoceneMiocene Asmari Formation, in Interior Fars (Zagros Basin, Iran), Carbonates and Evaporites, 35(3), https://doi.org/10.1007/s13146-020-00621-5.

59. Koop, W. J., and R. Stoneley (1982), Subsidence history of the Middle East Zagros basin, Permian to recent, Philosophical Transactions A, 305, 149–168, https://doi.org/10.1098/rsta.1982.0031.

60. Lakshtanov, L. Z., L. Z. Okhrimenko, O. N. Karaseva, and S. L. S. Stipp (2018), Limits on Calcite and Chalk Recrystallization, Crystal Growth & Design, 18(8), 4536–4543, https://doi.org/10.1021/acs.cgd.8b00537.

61. Langer, M. R., and L. Hottinger (2000), Biogeography of selected “larger” foraminifera, Micropaleontology, 46, 105–106.

62. Laursen, G. V., S. Monibi, T. L. Allan, N. A. H. Pickard, A. Hosseiney, et al. (2009), The Asmari Formation Revisited: Changed Stratigraphic Allocation and New Biozonation, in 1st International Petroleum Conference and Exhibition Shiraz 2009, EAGE Publications BV, https://doi.org/10.3997/2214-4609.20145919.

63. Lees, G. M. (1933), Reservoir Rocks of Persian Oil Fields, AAPG Bulletin, 17, 224–240, https://doi.org/10.1306/3D932B32-16B1-11D7-8645000102C1865D.

64. Llinas, J. C. (2002), Diagenetic history of the Upper Jurassic Smackover Formation and its effects on reservoir properties: Vocation Field, Manila SubBasin, Eastern Gulf Coastal Plain, Gulf Coast Association of Geological Societies Transactions, 52, 631–644.

65. Longman, M. W. (1980), Carbonate Diagenetic Textures from Nearsurface Diagenetic Environments, AAPG Bulletin, 64, 461–487, https://doi.org/10.1306/2F918A63-16CE-11D7-8645000102C1865D.

66. Madden, R. H. C., M. E. J. Wilson, M. Mihaljević, J. M. Pandolfi, and K. Welsh (2017), Unravelling the depositional origins and diagenetic alteration of carbonate breccias, Sedimentary Geology, 357, 33–52, https://doi.org/10.1016/j.sedgeo.2017.05.002.

67. Maghfouri, S., E. Rastad, G. Borg, M. R. Hosseinzadeh, M. Movahednia, A. Mahdavi, and F. Mousivand (2020), Metallogeny and temporal-spatial distribution of sediment-hosted stratabound copper (SSC-type) deposits in Iran; implications for future exploration, Ore Geology Reviews, 127, 103,834, https://doi.org/10.1016/j.oregeorev.2020.103834.

68. Mahmoodabadi, R. M. (2014), Petrography, Sedimentary Environments and Sequence Stratigraphy of Asmari Formation in Central Fars, Zagros, SW (Iran), Open Journal of Geology, 04(12), 665–679, https://doi.org/10.4236/ojg.2014.412050.

69. Maleki, Z., M. Arian, A. Solgi, and M. A. Ganjavian (2014), The Elements of Fold Style Analysis in the Khaftar Anticline, Zagros, Iran, Open Journal of Geology, 04(03), 79–92, https://doi.org/10.4236/ojg.2014.43008.

70. Maleki, Z., M. Arian, and A. Solgi (2015), Folding pattern in the Fars province, Zagros folded belt: case study on the Karbasi and Khaftar anticlines, interior Fars, Iran, Solid Earth Discussions, 7(3), 2347–2379, https://doi.org/10.5194/sed-7-2347-2015.

71. McLaughlin, P. P. (2005), Sequence stratigraphy, in Encyclopedia of Geology, pp. 159–173, Elsevier, https://doi.org/10.1016/B0-12-369396-9/00043-5.

72. Menke, H. P., M. G. Andrew, M. J. Blunt, and B. Bijeljic (2016), Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography - Effect of initial pore structure and flow conditions, Chemical Geology, 428, 15–26, https://doi.org/10.1016/j.chemgeo.2016.02.030.

73. Menke, H. P., B. Bijeljic, and M. J. Blunt (2017), Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH, Geochimica et Cosmochimica Acta, 204, 267–285, https://doi.org/10.1016/j.gca.2017.01.053.

74. Morse, J. W., and F. T. Mackenzie (1990), Early non-marine diagenesis of sedimentary, in Developments in Sedimentology, chap. 7, pp. 277–371, Elsevier, https://doi.org/10.1016/s0070-4571(08)70336-4.

75. Nadjafi, M., A. Mahboubi, R. Moussavi-Harami, and R. Mirzaee (2004), Depositional History and Sequence Stratigraphy of Outcropping Tertiary Carbonates in the Jahrum and Asmari Formations, Shiraz Area (SW Iran), Journal of Petroleum Geology, 27(2), 179–190, https://doi.org/10.1111/j.1747-5457.2004.tb00052.x.

76. Ogg, J. G., G. M. Ogg, and F. M. Gradstein (2016), A concise geologic time scale, 221 pp., Elsevier, https://doi.org/10.1016/c2009-0-64442-1.

77. Patzkowsky, M. E., and S. M. Holland (2012), Stratigraphic paleobiology: Understanding the distribution of fossil taxa in time and space, 221 pp., The University of Chicago Press.

78. Player, R. A. (1969), The Hormuz salt plugs of southern Iran, phdthesis.

79. Plint, A. G. (1990), An allostratigraphic correlation of the Muskiki and Marshybank formations (Coniacian-Santonian) in the Foothills and subsurface of the Alberta Basin, Bulletin of Canadian Petroleum Geology, 38, 288–306, https://doi.org/10.35767/gscpgbull.38.3.288

80. Plint, A. G., and D. Nummedal (2000), The falling stage systems tract: recognition and importance in sequence stratigraphic analysis, Geological Society, London, Special Publications, 172(1), 1–17, https://doi.org/10.1144/GSL.SP.2000.172.01.01.

81. Posamentier, H. W., and M. T. Jervey (1988), Sequence stratigraphy; implications for facies models and reservoir occurrence, CSPG Reservoir, 15(6), 1–2.

82. Posamentier, H. W., and P. R. Vail (1988), Sequence stratigraphy; sequences and systems tract development, Memoir Canadian Society of Petroleum Geologists, 15, 571–572.

83. Poursoltani, M. R., and M. Harati-Sabzvar (2019), Porosity evolution and diagenetic history of the upper Jurassic Mozduran Formation, eastern Kopet-Dagh Basin, NE Iran, Iranian Journal of Earth Sciences, 11(2), 141–159.

84. Rahmani, A., H. Vaziri-Moghaddam, A. Taheri, and A. Ghabeishavi (2009), A model for the paleoenvironmental distribution of larger foraminifera of Oligocene-Miocene carbonate rocks at Khaviz Anticline, Zagros Basin, SW Iran, Historical Biology, 21(3–4), 215–227, https://doi.org/10.1080/08912960903461296.

85. Razavi Pash, R., K. Sarkarinejad, S. Sherkati, and H. Motamedi (2021), Analogue model of the Bala Rud Fault, Zagros: an oblique basement ramp in a fold-and-thrust belt, International Journal of Earth Sciences, 110(2), 741–755, https://doi.org/10.1007/s00531-021-01987-0.

86. Reid, R. P., and I. G. Macintyre (1998), Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains, Journal of Sedimentary Research, 68(5), 928–946, https://doi.org/10.2110/jsr.68.928.

87. Richardson, R. K. (1924), The geology and oil measures of southwest Persia, Journal of the Institute of Petroleum Technology, 1, 256–283.

88. Salih, N., H. Mansurbeg, K. Kolo, and A. Préat (2019), Hydrothermal Carbonate Mineralization, Calcretization, and Microbial Diagenesis Associated with Multiple Sedimentary Phases in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq, Geosciences, 9(11), 459, https://doi.org/10.3390/geosciences9110459.

89. Scholle, P. A., and R. B. Halley (1985), Burial diagenesis: out of sight, out of mind!, in SEPM Special Publication, vol. 36, pp. 309–334, Society of Economic Paleontologists and Mineralogists.

90. Scholle, P. A., and D. S. Ulmer-Scholle (2003), A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis, American Association of Petroleum Geologists, https://doi.org/10.1306/M77973.

91. Sepehr, M., and J. W. Cosgrove (2004), Structural framework of the Zagros FoldThrust Belt, Iran, Marine and Petroleum Geology, 21(7), 829–843, https://doi.org/10.1016/j.marpetgeo.2003.07.006.

92. Sepehr, M., and J. W. Cosgrove (2005), Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran, Tectonics, 24(5), https://doi.org/10.1029/2004TC001725.

93. Sepehr, M., and J. W. Cosgrove (2007), The role of major fault zones in controlling the geometry and spatial organization of structures in the Zagros Fold-Thrust Belt, Geological Society, London, Special Publications, 272(1), 419–436, https://doi.org/10.1144/GSL.SP.2007.272.01.21.

94. Setudehnia, A. (1978), The Mesozoic sequence in south-west Iran and adjacent areas, Journal of Petroleum Geology, 1(1), 3–42, https://doi.org/10.1111/j.1747-5457.1978.tb00599.x

95. Seyrafian, A., and A. Hamedani (2003), Microfacies and paleoenvironmental interpretation of the lower Asmari Formation (Oligocene), North-Central Zagros Basin, Iran, Neues Jahrbuch für Geologie und Paläontologie - Monatshefte, 2003(3), 164–174, https://doi.org/10.1127/njgpm/2003/2003/164.

96. Sharland, P. R., R. Archer, and D. M. Casey (2001), Maximum flooding surfaces, in Arabian Plate Sequence Stratigraphy, chap. 4, pp. 261–278, GeoArabia.

97. Sherman, C. E., C. H. Fletcher, and K. H. Rubin (1999), Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii, Journal of Sedimentary Research, 69(5), 1083–1097, https://doi.org/10.2110/jsr.69.1083

98. Shogenova, A., and A. Kleesment (2006), Diagenetic influences on iron-bearing minerals in Devonian carbonate and siliciclastic rocks of Estonia, Proceedings of the Estonian Academy of Sciences. Geology, 55(4), 269, https://doi.org/10.3176/geol.2006.4.02.

99. Sibley, D., and J. Gregg (1987), Classification of Dolomite Rock Texture, Journal of sedimentary petrology, 57, 967–975.

100. Sooltanian, N., A. Seyrafian, and H. Vaziri-Moghaddam (2011), Biostratigraphy and paleo-ecological implications in microfacies of the Asmari Formation (Oligocene), Naura anticline (Interior Fars of the Zagros Basin), Iran, Carbonates and Evaporites, 26(2), 167–180, https://doi.org/10.1007/s13146-011-0053-6

101. Talbot, C. J., and M. Alavi (1996), The past of a future syntaxis across the Zagros, Geological Society, London, Special Publications, 100(1), 89–109, https://doi.org/10.1144/GSL.SP.1996.100.01.08.

102. Tucker, M. E., and V. P. Wright (1990), Carbonate Sedimentology, Wiley, https://doi.org/10.1002/9781444314175.

103. Tucker, R. D., P. H. Osberg, and H. N. Berry (2001), The geology of a part of Acadia and the nature of the Acadian orogeny across Central and Eastern Maine, American Journal of Science, 301(3), 205–260, https://doi.org/10.2475/ajs.301.3.205.

104. Vail, P. R., and R. M. Mitchum (1977), Seismic Stratigraphy and Global Changes of Sea Level, Part 1: Overview, in Seismic Stratigraphy - Applications to Hydrocarbon Exploration, vol. 26, pp. 51–52, American Association of Petroleum Geologists, https://doi.org/10.1306/M26490C3.

105. Vail, P. R., R. M. Mitchum, and S. Thompson (1977a), Seismic Stratigraphy and Global Changes of Sea Level, Part 4: Global Cycles of Relative Changes of Sea Level, in Seismic Stratigraphy - Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, https://doi.org/10.1306/M26490C6.

106. Vail, P. R., R. M. Mitchum, and S. Thompson (1977b), Seismic Stratigraphy and Global Changes of Sea Level, Part 3: Relative Changes of Sea Level from Coastal Onlap, in Seismic Stratigraphy - Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, https://doi.org/10.1306/M26490C5.

107. Vail, P. R., R. G. Todd, and J. B. Sangree (1977c), Seismic Stratigraphy and Global Changes of Sea Level, Part 5: Chronostratigraphic Significance of Seismic Reflections, in Seismic Stratigraphy - Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, https://doi.org/10.1306/M26490C7.

108. van Buchem, F. S. P., T. L. Allan, G. V. Laursen, M. Lotfpour, et al. (2010), Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran, Geological Society, London, Special Publications, 329(1), 219–263, https://doi.org/10.1144/SP329.10.

109. van Houten, F. B. (1973), Origin of Red Beds A Review-1961-1972, Annual Review of Earth and Planetary Sciences, 1(1), 39–61, https://doi.org/10.1146/annurev.ea.01.050173.000351.

110. van Wagoner, J. C., H. W. Posamentier, R. M. Mitchum, P. R. Vail, J. F. Sarg, T. S. Loutit, and J. Hardenbol (1988), An overview of the fundamentals of sequence stratigraphy and key definitions, in Sea-Level Changes, pp. 39–45, SEPM (Society for Sedimentary Geology), https://doi.org/10.2110/pec.88.01.0039.

111. van Wagoner, J. C., R. M. Mitchum, K. M. Campion, and V. D. Rahmanian (1990), Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies, American Association of Petroleum Geologists, https://doi.org/10.1306/Mth7510.

112. van Wagoner, J. C., D. Nummedal, C. R. Jones, D. R. Taylor, D. C. Jennette, and G. W. Riley (1991), Sequence Stratigraphy Applications to Shelf Sandstone Reservoirs, American Association of Petroleum Geologists.

113. Vaziri-Moghaddam, H., M. Kimiagari, and A. Taheri (2005), Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran, Facies, 52(1), 41–51, https://doi.org/10.1007/s10347-005-0018-0.

114. Vaziri-Moghaddam, H., A. Seyrafian, A. Taheri, and H. Motiei (2010), Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence, Revista Mexicana de Ciencias Geológicas, 27(1), 56–71.

115. Vincent, B., L. Emmanuel, P. Houel, and J.-P. Loreau (2007), Geodynamic control on carbonate diagenesis: Petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France), Sedimentary Geology, 197(3–4), 267–289, https://doi.org/10.1016/j.sedgeo.2006.10.008.

116. Warren, J. K. (2010), Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits, Earth-Science Reviews, 98(3–4), 217–268, https://doi.org/10.1016/j.earscirev.2009.11.004.

117. Wilson, J. L. (1975), Carbonate Facies in Geologic History, Springer New York, https://doi.org/10.1007/978-1-4612-6383-8.

118. Wilson, M. E. J., and M. J. Evans (2002), Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality, Marine and Petroleum Geology, 19(7), 873–900, https://doi.org/10.1016/S0264-8172(02)00085-5.

119. Yarem Taghloo Sohrabi, M., B. Soleimani, V. Ahmadi, D. Jahani, and N. Kohansal Ghadimvand (2019), Investigation of Sequential Stratigraphy, Microfacies, Sedimentary Environment and Diagenesis Processes of Asmari Formation in Interior Fars Areas, Iran (Farashband, Sarvestan, Kalestan), Environment and Ecology, 37(4B), 1546–1560.

Войти или Создать
* Забыли пароль?