Tehran, Иран
УДК 55 Геология. Геологические и геофизические науки
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
BISAC SCI SCIENCE
In order to better understand the regional tectonic activities of the continent-continent ongoing collision-compressed edge zone of the Eurasian-Arabic plates, 2D tomography maps of the Caucasus territory using the Rayleigh waves were generated. The 2D tomography images of this study, illustrate the large variety in surface wave propagation velocity in different complex geologic units of the Caucasus. To draw the 2D tomography maps, we accomplished a 2D-linear inversion procedure on the Rayleigh wave dispersion curves for the periods of 5 to 70 s (depth= ~180 km). To conduct this, local-regional data from ~1300 earthquakes (M≥3.9) recorded by the 49 broadband stations from 1999 to 2018 in a wide area with complicated tectonic units were used. In comparison with results of previous studies in Caucasus, the tomography maps for the long-periods (T= 50-70 s; depth ~180 km) are more influenced by the velocity structure of the uppermost mantle which demonstrate the ultralow and ultrahigh-velocity anomalies. The results for the medium-periods (30≤T≤45 s), the low-velocity zones coincide with areas thought to be correlated with underplating of the lower crust (e.g. shallow LAB), while, the high-velocity zones are usually demonstrating the presence of a normal continental crust over a stable and thick or oceanic-like lid. Short-periods (5≤T≤25 s) are more influenced by the ever-evolving deformations of the geological units, sedimentary basins, volcanic complexes, uplifts, and reveals a low-velocity small zone, on the NW slope of the Aragats volcano (depth= ~7 km), which is different from the results of other studies.
The Caucasus territory, Tectonic activities, 2D surface wave tomography, Group velocity maps, 2D linear inversion
1. Abbasov, O. R. (2016), Geological and geochemical properties of oil shale in Azerbaijan and petroleum potential of deep-seated Eocene-Miocene deposits, European Journal of Natural History, (2), 31-40.
2. Adamia, S., G. Zakariadze, T. Chkhotua, N. Sadradze, N. Tsereteli, A. Chabukiani, and A. Gventsadze (2011), Geology of the Caucasus: A Review, Turkish Journal of Earth Sciences, 20(5), 489-544„ doihttps://doi.org/10.3906/yer-1005-11.
3. Ammon, C. J. (2019), Seismic Waves and Earth’s Interior, http://eqseis.geosc.psu.edu/cammon/HTML/Classes/IntroQuakes/Notes/waves_and_interior.html.
4. Aydın, İ., H. İ. Karat, and A. Koçak (2005), Curie-point depth map of Turkey, Geophysical Journal International, 162(2), 633-640, doihttps://doi.org/10.1111/j.1365-246X.2005.02617.x.
5. Beccaluva, L., A. Azzouni-Sekkal, A. Benhallou, G. Bianchini, R. Ellam, M. Marzola, F. Siena, and F. Stuart (2007), Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): Evi- dence from HIMU metasomatised lherzolite mantle xenoliths, doihttps://doi.org/10.1016/j.epsl.2007.05.047.
6. Bedle, H., and S. van der Lee (2009), S velocity variations beneath North America, Journal of Geophysical Research: Solid Earth, 114(B7), B07,308, doihttps://doi.org/10.1029/2008JB005949.
7. Bochud, M. (2011), Tectonics of the eastern greater caucasus in azerbaijan, Ph.D. thesis.
8. Condie, K. C. (2001), Mantle Plumes and their Record in Earth History, Cambridge University Press, doihttps://doi.org/10.1017/cbo9780511810589.
9. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current Plate Motions, Geophysical Journal International, 101(2), 425-478, doihttps://doi.org/10.1111/j.1365-246x.1990.tb06579.x.
10. Ditmar, P. G., and T. Yanovskaya (1987), A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity, Izv. Phys. Solid Earth, 23, 470-477.
11. Fang, L. (2010), Rayleigh wave tomography in North-China from ambient seismic noise, Ph.D. thesis, Universit. degli studi di Trieste.
12. Golonka, J. (2004), Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, in EUROPROBE, GeoRift 3: Intraplate Tectonics and Basin Dynamics. The Lithosphere of the Southern Eastern European Craton and its Margin, vol. 381, pp. 235-273, doihttps://doi.org/10.1016/j.tecto.2002.06.004.
13. Herrmann, R. B. (2013), Computer Programs in Seismology: An Evolving Tool for Instruction and Research, Seis- mological Research Letters, 84(6), 1081-1088, doihttps://doi.org/10.1785/0220110096.
14. Herrmann, R. B., and C. J. Ammon (2004), Computer programs in seismology. 3.30[cp/ol], http://www.eas.slu.edu/eqc/eqccps.html.
15. Ismail-Zadeh, A., S. Adamia, A. Chabukiani, T. Chelidze, S. Cloetingh, M. Floyd, A. Gorshkov, A. Gvishiani, T. Ismail-Zadeh, M. K. Kaban, F. Kadirov, J. Karapetyan, T. Kangarli, J. Kiria, I. Koulakov, J. Mosar, T. Mum- ladze, B. Müller, N. Sadradze, R. Safarov, F. Schilling, and A. Soloviev (2020), Geodynamics, seismicity, and seismic hazards of the Caucasus, Earth-Science Reviews, 207, 103,222, doihttps://doi.org/10.1016/j.earscirev.2020.103222.
16. Jackson, J., K. Priestley, M. Allen, and M. Berberian (2002), Active tectonics of the South Caspian Basin, Geophysical Journal International, 148(2), 214-245, doihttps://doi.org/10.1046/j.1365-246X.2002.01588.x.
17. Jin, D. J., and R. J. Colby (1991), A basic program to compute seismic surface-wave group-velocity dispersion curves, Computers & Geosciences, 17(6), 777-799, doihttps://doi.org/10.1016/0098-3004(91)90060-q.
18. Jrbashyan, R., G. Chlingaryan, Y. Kagramanov, A. Karapetyan, M. Satian, Y. Sayadyan, and H. Mkrtchyan (2001), Geology of Meso-Cenozoic Basins in Central Armenia, with Comment on Indications of Hydrocarbons, Search and Discovery, (30007).
19. Keskin, M. (2003), Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters, 30(24), doihttps://doi.org/10.1029/2003GL018019.
20. Khuduzade, A. I., and A. Jafarov (2017), Structural-tectonic features of the south-eastern part of the Greater Cauca- sus the pre-Caspian GUBA as an example of the NQR, Seismoprognosis observations in the territory of Azerbaijan, 14(1), 42-46.
21. Koulakov, I., I. Zabelina, I. Amanatashvili, and V. Meskhia (2012), Nature of orogenesis and volcanism in the caucasus region based on results of regional tomography, Solid Earth, 3(2), 327-337, doihttps://doi.org/10.5194/se-3-327-2012.
22. Kovachev, S. A., V. G. Kaz’min, I. P. Kuzin, and L. I. Lobkovsky (2009), New data on mantle seismicity of the caspian region and their geological interpretation, Geotectonics, 43(3), 208-220, doihttps://doi.org/10.1134/s0016852109030030.
23. Mangino, S., and K. Priestley (1998), The crustal structure of the southern Caspian region, Geophysical Journal International, 133(3), 630-648, doihttps://doi.org/10.1046/j.1365-246x.1998.00520.x.
24. Milyukov, V., E. Rogozhin, A. Gorbatikov, A. Mironov, A. Myasnikov, and M. Stepanova (2018), Contemporary State of the Elbrus Volcanic Center (The Northern Caucasus), Pure and Applied Geophysics, 175(5), 1889-1907, doihttps://doi.org/10.1007/s00024-017-1595-x.
25. Mumladze, T., A. M. Forte, E. S. Cowgill, C. C. Trexler, N. A. Niemi, M. B. Yıkılmaz, and L. H. Kellogg (2015), Sub- ducted, detached, and torn slabs beneath the greater caucasus, GeoResJ, 5, 36-46, doihttps://doi.org/10.1016/j.grj.2014.09.004.
26. Porter, R. C., S. van der Lee, and S. J. Whitmeyer (2019), Synthesizing EarthScope data to constrain the thermal evolution of the continental u.s. lithosphere, Geosphere, 15(6), 1722-1737, doihttps://doi.org/10.1130/ges02000.1.
27. Presnall, D. C., and G. H. Gudfinnsson (2011), Oceanic Volcanism from the Low-velocity Zone - without Mantle Plumes, Journal of Petrology, 52(7-8), 1533-1546, doihttps://doi.org/10.1093/petrology/egq093.
28. Rahimi, H., F. F. Mahdavyan, H. Zandi, and N. M. Beygi (2014), Velocity structure in North part of Iranian Plateau, in Proceedings of the 16th Conference of Geophysics in Iran, 13-15 May, Tehran, Iran, University of Tehran.
29. Ruppel, C., and M. McNutt (1990), Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data, Earth and Planetary Science Letters, 98(3), 360-379, doihttps://doi.org/10.1016/0012-821x(90)90037-x.
30. Skobeltsyn, G., R. Mellors, R. Gök, N. Türkelli, G. Yetirmishli, and E. Sandvol (2014), Upper mantle S wave velocity structure of the East Anatolian-Caucasus region, Tectonics, 33(3), 207-221, doihttps://doi.org/10.1002/2013tc003334.
31. Sosson, M., N. Kaymakci, R. Stephenson, F. Bergerat, and V. Starostenko (2010), Sedimentary basin tectonics from the black sea and caucasus to the arabian platform: introduction, Geological Society, London, Special Publications, 340(1), 1-10, doihttps://doi.org/10.1144/sp340.1.
32. Sosson, M., R. Stephenson, and S. Adamia (2017), Tectonic Evolution of the Eastern Black Sea and Caucasus: an introduction, Geological Society, London, Special Publications, 428(1), 1-9, doihttps://doi.org/10.1144/sp428.16.
33. Sugden, P. J., I. P. Savov, M. Wilson, K. Meliksetian, G. Navasardyan, and R. Halama (2018), The Thickness of the Mantle Lithosphere and Collision-Related Volcanism in the Lesser Caucasus, Journal of Petrology, 60(2), 199-230, doihttps://doi.org/10.1093/petrology/egy111.
34. Sun, Y. (2004), Adaptive Moving Window Method for 3D P-Velocity Tomography and Its Application in China, Bulletin of the Seismological Society of America, 94(2), 740-746, doihttps://doi.org/10.1785/0120030129.
35. Sun, Y., M. N. Toksöz, R. J. Martin, M. Krasovec, D. Yu, Q. Liu, and J. Liu (2012), Crustal and uppermost mantle structure of Caucasus and surrounding regions, Earthquake Science, 25(5-6), 505-515, doihttps://doi.org/10.1007/s11589-012- 0874-y.
36. Thybo, H. (2006), The heterogeneous upper mantle low velocity zone, Tectonophysics, 416(1-4), 53-79, doihttps://doi.org/10.1016/j.tecto.2005.11.021.
37. Yanovskaya, T. B. (1997), Resolution estimation in the problems of seismic ray tomography, Izv. Phys. Solid Earth, 33(9), 762-765.
38. Yanovskaya, T. B., and P. G. Ditmar (1990), Smoothness criteria in surface wave tomography, Geophysical Journal International, 102(1), 63-72, doihttps://doi.org/10.1111/j.1365-246x.1990.tb00530.x.
39. Yanovskaya, T. B., E. S. Kizima, and L. M. Antonova (1998), Structure of the crust in the Black Sea and adjoining regions from surface wave data, Journal of Seismology, 2(4), 303-316, doihttps://doi.org/10.1023/a:1009716017960.
40. Zabelina, I., I. Koulakov, I. Amanatashvili, S. E. Khrepy, and N. Al-Arifi (2016), Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography, Journal of Asian Earth Sciences, 119, 87-99, doihttps://doi.org/10.1016/j.jseaes.2016.01.010.