Новосибирский государственный технический университет
Новосибирский государственный университет
Новосибирская область, Россия
Россия
Новосибирская область, Россия
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
BISAC SCI019000 Earth Sciences / General
In recent years, the analysis of the dependence of reflection coefficients on the magnitude of the angle of incidence of reflected waves has been successfully used in the practice of seismic research. AVO analysis is one of the methods of dynamic analysis that is used to estimate changes in the amplitude of reflected waves depending on the distance between the explosion points and the receivers. The AVO method is based on the analysis of the dependence of the reflection coefficients on the angle of incidence. In real conditions, this dependence can be determined, for example, by the roughness of the boundaries. This determines the relevance of studying the features of reflection coefficients on uneven boundaries on objects with well-controlled properties. The aim of the work is to determine the nature of the influence of different-scale roughness of seismic boundaries on the reflection coefficients of elastic waves. The work also used the technique of isolating standing waves to determine the wave velocity. As a result, graphs were obtained demonstrating the dependence of the reflection coefficients on the magnitude of the angle of incidence of reflected waves from a rough surface. Reflection coefficients were also obtained for the boundary of an isotropic medium in the direction of the isotropy plane and possible ways of applying the results were analyzed. Based on the data obtained, we can say that when the azimuth changes relative to the direction of the surface, the reflection coefficients change significantly only at the supercritical angles of incidence.
rough boundaries, reflection coefficients, elastic waves, physical modeling.
1. Aki, K., Richards, P., (1980). San Francisco: Freeman. Quantitative Seismology, Theory and Methods, 2nd edn. Vol. 1. pp 557.
2. Červený, V., Ravindra, R., (1971). «Theory of Seismic Head Waves». Toronto: University of Toronto Press, pp 312.
3. Chang, C.H., Gardner, G.H.F., McDonald, J.A., (1995). «Experimental observation of surface wave propagation for a transversely isotropic medium». Geophysics, 60, pp 185-190.
4. Dugarov G.A., Kolesnikov Yu.I., Fedin K.V., Orlov Yu.A., (2020). «Acoustic measurements on artificial fractured samples made using FDM 3D printing technology». Proceedings of the All-Russian Acoustic Conference (St. Petersburg, 2020) - POLYTECH-PRESS - SPb. pp. 621-626.
5. Jenner, E., (2002). «Azimuthal AVO: Methodology and data examples». The Leading Edge, 21, pp 782-786.
6. Karaev, N.A., Lukashin, Yu.P., Prokator, O.M. & Semenov, V.P., (2008). «Physics modeling of a fractured media». Seismic Technologies, 2, pp 64-73.
7. Kolesnikov, Y.I., (2005). «Reflection of ultrasonic pulses from the interface between water and non-perfectly elastic media: experimental data for the case of oblique incidence.» Phys. Mesomech., 8, pp. 43-48. (In Russian)
8. Kolesnikov Yu.I., Fedin K.V., Orlov Yu.A., (2018). «Physical modeling of reflection of elastic waves from an azimuthally anisotropic medium» // Sb. mater. XIV International Scientific Congress. "Subsurface use. Mining. Directions and technologies of prospecting, exploration and development of mineral deposits. Economy. Geoecology" in 6 vols. Novosibirsk, SGUGiT Vol.3, pp 3191-198.
9. Malehmir R., Schmitt D.R., (2017). «Acoustic reflectivity from variously oriented orthorhombic media: analogies to seismic responses from a fractured anisotropic crust» // Journal of Geophysical Research - Solid Earth 122(12):10069-10085.
10. Mallick, S., Craft, K.L., Meister, L.J. & Chambers, R.E., (1998). «Determination of the principal directions of azimuthal anisotropy from P-wave seismic data». Geophysics Vol.63, pp. 692-706.
11. Rüger, A., (1997). «P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry». Geophysics 62:713-722.
12. State Standard 34081-2017. Buildings and constructions. Determination of parameters of the basic tone of natural oscillations. Moscow, Standartinform, 2017. 19 p. (in Russian).
13. Fedin, K.V., Kolesnikov, Y.I., Dugarov, G.A., Beysembaev, R.N., (2020). «Research of reflection of elastic waves from rough borders (physical modeling)». Processes in GeoMedia 23:634. (In Russian)
14. Zeltmann, S.E., Gupta, N., Tsoutsos, N.G., Maniatakos, M., Rajendran, J. & Karri, R., (2016). «Manufacturing and Security Challenges in 3D Printing». JOM 68:1872-1881.