Аннотация и ключевые слова
Аннотация (русский):
A new 21-meter eddy covariance tower is installed in the Meteorological observatory of Moscow State University in November 2019. It includes 3 levels with METEK sonic anemometers. The mast is located inside the urban area and makes it possible to analyze the structure of atmospheric turbulence in a heterogeneous urban condition. The measurement data from November 2019 to May 2020 are processed. Turbulent fluctuations of the wind velocity components are found to increase with height within 20 meters above the surface. The turbulent kinetic energy is proportional to the square of the averaged horizontal wind speed. The drag coefficient is determined by the type of footprint surface, with a value of 0.08 and 0.05 for urbanized and vegetated surfaces, respectively. The "turbulent flux of heat flux" is reasonably well predicted by diagnostic relation with heat flux, skewness and standard deviation of vertical speed, suggesting significant contribution of coherent structures to turbulent fluxes. The daily amplitude of the temperature variance increases with the daily amplitude of the average temperature. The paper considers the conditions for the applicability of the Monin-Obukhov similarity theory to the calculation of turbulent fluxes over a heterogeneous urban landscape.

Ключевые слова:
atmospheric turbulence, urban climate, drag coefficient, Monin-Obukhov similarity theory, turbulent statistics, footprint
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Abdella, K., and N. McFarlane, A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer, J. Atmos. Sci., 54(14), 1850-1867, doihttps://doi.org/10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2, 1997.

2. Ament, F., and C. Simmer, Improved Representation of Land-surface Heterogeneity in a Non-hydrostatic Numerical Weather Prediction Model, Boundary-Layer Meteorology, 121(1), 153-174, doihttps://doi.org/10.1007/s10546-006-9066-4, 2006.

3. Anderson, W., Turbulent channel flow over heterogeneous roughness at oblique angles, J. Fluid Mech., 886, A15-1-A15-15, doihttps://doi.org/10.1017/jfm.2019.1022, 2020.

4. Aubinet, M., T. Vesala, and D. Papale, Eddy covariance: a practical guide to measurement and data analysis, 442 pp., Dordrecht: Springer, doihttps://doi.org/10.1007/978-94-007-2351-1, 2012.

5. Barskov, K. V., V. M. Stepanenko, I. A. Repina, A. Y. Artamonov, and A. V. Gavrikov, Two regimes of turbulent fluxes above frozen small lake surrounded by forest, Bound.-Layer Meteorol., 173(3), 311-320, doihttps://doi.org/10.1007/s10546-019-00469-w, 2019.

6. Bou-Zeid, E., C. Meneveau, and M. B. Parlange, Large-eddy simulation of neutral atmospheric boundary layer flow overheterogeneous surfaces: Blending height and effective surface roughness, Water Resources Research, 40(2), W02,505, doihttps://doi.org/10.1029/2003WR002475, 2004.

7. Bou-Zeid, E., W. Anderson, G. G. Katul, and L. Mahrt, The persistent challenge of surface heterogeneity in boundary-layer meteorology: a review, Bound.-Layer Meteorol., 177(2), 227-245, doihttps://doi.org/10.1007/s10546-020-00551-8, 2020.

8. Burba, G., Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: a Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates, 331 pp., LI-COR Biosciences: Lincoln, USA, 2013.

9. Esau, I. N., Amplification of turbulent exchange over wide arctic leads: large-eddy simulation study, J. Geophys. Res., 112(D8), D08,109, doihttps://doi.org/10.1029/2006JD007225, 2007.

10. Falabino, S., and S. Trini Castelli, Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer, Meteorology and Atmospheric Physics, 129(1), 83-98, doihttps://doi.org/10.1007/s00703-016-0457-x, 2017.

11. Foken, T., M. Mauder, C. Liebethal, F. Wimmer, F. Beyrich, J.-P. Leps, S. Raasch, H. A. R. DeBruin, W. M. L. Meijninger, and J. Bange, Energy balance closure for the LITFASS-2003 experiment, Theoretical and Applied Climatology, 101(1), 149-160, doihttps://doi.org/10.1007/s00704-009-0216-8, 2010.

12. Fontan, S., G. Katul, D. Poggi, C. Manes, and L. Ridolfi, Flume experiments on turbulent flows across gaps of permeable and impermeable boundaries, Bound.-Layer Meteorol., 147(1), 21-39, doihttps://doi.org/10.1007/s10546-012-9772-z, 2013.

13. Garratt, J. R., The internal boundary layer - A review, Bound.-Layer Meteorol., 50(1), 171-203, doihttps://doi.org/10.1007/BF00120524, 1990.

14. Giorgi, F., and R. Avissar, Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling, Reviews of Geophysics, 35(4), 413-437, doihttps://doi.org/10.1029/97RG01754, 1997.

15. Glazunov, A. V., and V. M. Stepanenko, Large-eddy simulation of stratified turbulent flows over heterogeneous landscapes, Izv. Atmos. Ocean Phys., 51(4), 351-361, doihttps://doi.org/10.1134/S0001433815040027, 2015.

16. Higgins, C. W., E. Pardyjak, M. Froidevaux, V. Simeonov, and M. B. Parlange, Measured and estimated water vapor advection in the atmospheric surface layer, J. Hydrometeorol., 14(6), 1966-1972, doihttps://doi.org/10.1175/JHM-D-12-0166.1, 2013.

17. Kenny, W. T., G. Bohrer, T. H. Morin, C. S. Vogel, A. M. Matheny, and A. R. Desai, A Numerical Case Study of the Implications of Secondary Circulations to the Interpretation of Eddy-Covariance Measurements Over Small Lakes, Bound.-Layer Meteorol., 165(22), 311-332, doihttps://doi.org/10.1007/s10546-017-0268-8, 2017.

18. Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, Development and evaluation of a mosaic approach in the WRF-Noah framework, J. Geophys. Res. Atmos., 118(21), 11,918-11,935, doihttps://doi.org/10.1002/2013JD020657, 2013.

19. Mahrt, L., Variability and maintenance of turbulence in the very stable boundary layer, Bound.-Layer Meteorol., 135(1), 1-18, doihttps://doi.org/10.1007/s10546-009-9463-6, 2010.

20. Medjnoun, T., C. Vanderwel, and B. Ganapathisubramani, Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities, J. Fluid Mech., 838, 516-543, doihttps://doi.org/10.1017/jfm.2017.849, 2018.

21. Monin, A. S., and A. M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151(24), 163-187, (In Russian), 1954.

22. Monin, A. S., and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1, 874 pp., London Cambridge Mass.: MIT Press, 1975.

23. Mortarini, L., E. Ferrero, S. Falabino, S. Trini Castelli, R. Richiardone, and D. Anfossi, Low-frequency processes and turbulence structure in a perturbed boundary layer, Quarterly Journal of the Royal Meteorological Society, 139(673), 1059-1072, doihttps://doi.org/10.1002/qj.2015, 2013.

24. Pashkin, A. D., I. A. Repina, V. M. Stepanenko, V. Y. Bogomolov, S. V. Smirnov, and A. E. Telminov, An experimental study of atmospheric turbulence characteristics in an urban canyon, IOP Conference Series: Earth and Environmental Science, 386, 012,035, doihttps://doi.org/10.1088/1755-1315/386/1/012035, 2019.

25. Pitman, A., The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23(5), 479-510, doihttps://doi.org/10.1002/joc.893, 2003.

26. Prueger, J., J. Alfieri, L. Hipps, W. Kustas, J. Chavez, S. Evett, M. Anderson, A. French, C. Neale, L. McKee, J. Hatfield, T. Howell, and N. Agam, Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08, Adv. Water. Resour., 50, 106-119, doihttps://doi.org/10.1016/j.advwatres.2012.07.014, 2012.

27. Raasch, S., and G. Harbusch, An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation, Bound.-Layer Meteorol., 101(1), 31-59, doihttps://doi.org/10.1023/A:1019297504109, 2001.

28. Rao, K. S., J. C. Wyngaard, and O. R. Cote, The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness, J. Atmos. Sci., 31(3), 738-746, doihttps://doi.org/10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2, 1974.

29. Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philosophical Transactions of the Royal Society of London, A, 186, 123-164, 1895.

30. Stiperski, I., M. Chamecki, and M. Calaf, Anisotropy of unstably stratified near-surface turbulence, Bound.-Layer Meteorol., 180(3), 363-384, doihttps://doi.org/10.1007/s10546-021-00634-0, 2021.

31. Stoll, R., and F. Porte-Agel, Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions, J. Atmos. Sci., 66(2), 412-431, doihttps://doi.org/10.1175/2008JAS2668.1, 2009.

32. Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, Turbulence regimes and turbulence intermittency in the stable boundary layer during cases-99, J. Atmos. Sci., 69(1), 338-351, doihttps://doi.org/10.1175/JAS-D-11-082.1, 2012.

33. Zilitinkevich, S. S., V. M. Gryanik, V. N. Lykossov, and D. V. Mironov, Third-Order Transport and Nonlocal Turbulence Closures for Convective Boundary Layers, J. Atmos. Sci., 56(19), 3463-3477, doihttps://doi.org/10.1175/1520-0469(1999)056<3463:TOTANT>2.0.CO;2, 1999.

Войти или Создать
* Забыли пароль?