Spatial Variability of the Frontal Zones and its Eddies Generated in the Norwegian Sea
Аннотация и ключевые слова
Аннотация (русский):
The Norwegian Sea is the meeting place of warm and salty Atlantic waters with cold and fresh Arctic waters. The thermal and haline frontal zones (FZs) formed as a result of this interaction are areas of increased horizontal gradients of physical, chemical, and biological parameters, and have a significant impact on regional circulation. Many mesoscale eddies are generated in the FZs which are actively involved in the eddy dynamics of the Norwegian Sea. The aim of this work is to analyze the spatio-temporal variability of the vertical structure of FZs in the Norwegian Sea, as well as the eddies that form within their boundaries. The work uses data from the oceanic reanalysis GLORYS12V1, as well as the Atlas of Mesoscale Eddies “Mesoscale Eddy Trajectory Atlas product META 3.2 DT” for the period 1993–2021. We analyze the average depth and thickness of FZs, the vertical distribution of their thermohaline gradients and areas. The work examines the seasonal and interannual variability of the volumes of thermal and haline FZs, the seasonal and interannual variability of mesoscale eddies, their spatial distribution, trajectories, and main parameters. In some areas, deepening of FZs has been established, and their thickness can reach 900 m. The presence of significant haline gradients in the layer of 250–750 m has been found, while thermal FZs can be traced vertically up to 1000 m compared with haline FZs. In some FZs, the interannual variability may exceed the seasonal one. The greatest variability of haline FZs can be traced in the autumn period, and the smallest – in the winter–spring. It is noticeable in the summer period that thermal FZs weaken. Eddies can leave the boundaries of the FZs and move away from the place of origin for hundreds of kilometers. The number and lifetime of cyclones exceed similar estimates for anticyclones, while anticyclones travel long distances compared to cyclones.

Ключевые слова:
frontal zones, mesoscale eddies, Norwegian sea, GLORYS12V1, META
Текст произведения (PDF): Читать Скачать
Список литературы

1. Akhtyamova, A. F., and V. S. Travkin (2023), Investigation of Frontal Zones in the Norwe- gian Sea, Physical Oceanography, 30(1), 62-77, 23-1-62-77.

2. Alexeev, V. A., V. V. Ivanov, I. A. Repina, O. Y. Lavrova, and S. V. Stanichny (2016), Convective structures in the Lofoten Basin based on satellite and Argo data, Izvestiya, Atmospheric and Oceanic Physics, 52(9), 1064-1077,

3. Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson (2001), Arctic Oscillation or North Atlantic Oscillation?, Journal of Climate, 14(16), 3495-3507, 20-0442(2001)014<3495:aoonao>;2.

4. Bashmachnikov, I. L., M. A. Sokolovskiy, T. V. Belonenko, D. L. Volkov, P. E. Isachsen, and X. Carton (2017), On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Research Part I: Oceanographic Research Papers, 128, 1-27,

5. Belkin, I. M. (2002), Front, in Interdisciplinary Encyclopedia of Marine Sciences, p. 433-436, Grolier Academic Reference.

6. Belonenko, T., V. Zinchenko, S. Gordeeva, and R. P. Raj (2020), Evaluation of heat and salt transports by mesoscale eddies in the Lofoten Basin, Russian Journal of Earth Sciences, 20(6), 1-15,

7. Belonenko, T. V., I. L. Bashmachnikov, A. V. Koldunov, and P. A. Kuibin (2017), On the vertical velocity component in the mesoscale Lofoten vortex of the Norwegian Sea, Izvestiya, Atmospheric and Oceanic Physics, 53(6), 641-649,

8. Belonenko, T. V., V. A. Zinchenko, A. M. Fedorov, M. V. Budyansky, S. V. Prants, and M. Y. Uleysky (2021), Interaction of the Lofoten Vortex with a Satellite Cyclone, Pure and Applied Geophysics, 178(1), 287-300,

9. Blindheim, J., and F. Rey (2004), Water-mass formation and distribution in the Nordic Seas during the 1990s, ICES Journal of Marine Science, 61(5), 846-863, 6/j.icesjms.2004.05.003.

10. Bosse, A., and I. Fer (2019), Seaglider missions in the Norwegian Sea during the PROVOLO project,

11. Brandini, F. P., P. M. Tura, and P. P. G. M. Santos (2018), Ecosystem responses to bio- geochemical fronts in the South Brazil Bight, Progress in Oceanography, 164, 52-62,

12. Carnevale, G. F., R. C. Kloosterziel, and G. J. F. V. Heijst (1991), Propagation of barotropic vortices over topography in a rotating tank, Journal of Fluid Mechanics, 233, 119-139,

13. Chapman, C. C. (2014), Southern Ocean jets and how to find them: Improving and comparing common jet detection methods, Journal of Geophysical Research: Oceans, 119(7), 4318-4339,

14. Fedorov, A. M., R. P. Raj, T. V. Belonenko, E. V. Novoselova, I. L. Bashmachnikov, J. A. Johannessen, and L. H. Pettersson (2021), Extreme Convective Events in the Lofoten Basin, Pure and Applied Geophysics, 178(6), 2379-2391,

15. Fedorov, K. N. (1983), Physical nature and structure of oceanic fronts, 296 pp., Hydrometeoiz- dat, Leningrad (in Russian).

16. Gruzinov, V. M. (1986), Hydrology of frontal zones of the World Ocean, 272 pp., Hydrome- teoizdat, Leningrad (in Russian).

17. Ivanov, V. V., and A. A. Korablev (1995), Dynamics of an intrapycnocline lens in the Norwegian Sea, Russian Meteorology and Hydrology, 10, 32-37 (in Russian).

18. Koldunov, A. V., and T. V. Belonenko (2020), Hydrodynamic Modeling of Vertical Velocities in the Lofoten Vortex, Izvestiya, Atmospheric and Oceanic Physics, 56(5), 502-511,

19. Kostianoy, A. G., and J. C. J. Nihoul (2009), Frontal Zones in the Norwegian, Greenland, Barents and Bering Seas, in Influence of Climate Change on the Changing Arctic and Sub- Arctic Conditions, pp. 171-190, Springer Netherlands, 20-9460-6_13.

20. Kostianoy, A. G., J. C. J. Nihoul, and V. B. Rodionov (2004), Physical Oceanography of the Frontal Zones in Sub-Arctic Seas, Elsevier Oceanography Series, 326 pp., Elsevier Science & Technology Books.

21. Kushnir, V., V. Pavlov, A. Morozov, and O. Pavlova (2011), "Flashes" of chlorophyll-a concentration derived from in situ and remote sensing data at the Polar Front in the Barents Sea, The Open Oceanography Journal, 5(1), 14-21,

22. Liu, Y., J. Wang, G. Han, X. Lin, G. Yang, and Q. Ji (2022), Spatio-temporal analysis of east greenland polar front, Frontiers in Marine Science, 9, 1-14,

23. Malinin, V. N., and S. M. Gordeeva (2009), Fishery oceanology of south-east Pacific, vol. 1, 278 pp., RGGMU Publishing House (in Russian).

24. Mikaelyan, A. S., A. G. Zatsepin, and A. A. Kubryakov (2020), Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems, Physical Oceanography, 27(6), 590-618,

25. Nesterov, E. S. (2013), North Atlantic Oscillation: Atmosphere and Ocean, 144 pp., Triada, Moscow (in Russian).

26. Novoselova, E. V., and T. V. Belonenko (2020), Isopycnal Advection in the Lofoten Basin of the Norwegian Sea, Fundamental and Applied Hydrophysics, 13(3), 56-67, (in Russian).

27. Ozhigin, V. K., V. A. Ivshin, A. G. Trofimov, A. L. Karsakov, and M. Y. Antsiferov (2016), The Barents Sea water: structure, circulation, variability, 260 pp., PINRO, Murmansk (in Russian).

28. Pegliasco, C., A. Delepoulle, E. Mason, R. Morrow, Y. Faugère, and G. Dibarboure (2022), META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry, Earth System Science Data, 14(3), 1087-1107,

29. Raj, R. P., J. A. Johannessen, T. Eldevik, J. E. Ø. Nilsen, and I. Halo (2016), Quantifying mesoscale eddies in the Lofoten Basin, Journal of Geophysical Research: Oceans, 121(7), 4503-4521,

30. Raj, R. P., S. Chatterjee, L. Bertino, A. Turiel, and M. Portabella (2019), The Arctic Front and its variability in the Norwegian Sea, Ocean Science, 15(6), 1729-1744,

31. Richards, C. G., and F. Straneo (2015), Observations of Water Mass Transformation and Eddies in the Lofoten Basin of the Nordic Seas, Journal of Physical Oceanography, 45(6), 1735-1756,

32. Romanov, A. A., and A. A. Romanov (2018), "Norwegian Sea - 97" The major results of comprehensive experiment, 311 pp., Space Research Institute of the Russian Academy of Sciences (IKI), Moscow (in Russian).

33. Russell, R. W., N. M. Harrison, and G. L. Hunt (1999), Foraging at a front:hydrography, zooplankton, and avian planktivory in the northern Bering Sea, Marine Ecology Progress Series, 182, 77-93,

34. Shchepetkin, A. F. (1995), Interaction of turbulent barotropic shallow-water flow with topography, in Proceedings of Hawaiian Winter Aha Huliko’a Workshop, pp. 225-237, HI, Honolulu.

35. Travkin, V. S., and T. V. Belonenko (2019), Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data, Russian Journal of Earth Sciences, 19(5), 1-10,

36. Travkin, V. S., and T. V. Belonenko (2020), Mixed layer depth in winter convection in the Lofoten Basin in the Norwegian Sea and assessment methods, Hydrometeorology and Ecology, Proceedings of the Russian State Hydrometeorological University, (59), 67-83, (in Russian).

37. Travkin, V. S., and T. V. Belonenko (2021), Study of the Mechanisms of Vortex Variability in the Lofoten Basin Based on Energy Analysis, Physical Oceanography, 28(3), 294-308,

38. Wunsch, C. (1992), Decade-To-Century Changes In The Ocean Circulation, Oceanography, 5(2), 99-106.

39. Zalogin, B. S., and A. N. Kosarev (1999), Seas, 400 pp., Mysl’, Moscow (in Russian). Zhmur, V. V. (2011), Mesoscale eddies of the Ocean, 384 pp., GEOS, Moscow (in Russian).

Войти или Создать
* Забыли пароль?