сотрудник с 01.01.2018 по настоящее время
Россия
УДК 55 Геология. Геологические и геофизические науки
УДК 550 Вспомогательные геологические науки
УДК 550.3 Геофизика
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The Baikal Rift Zone is seismically active and each well recorded strong earthquake (for example, as the Kultukskoe earthquake (South of Baikal), on August 27, 2008, with Mw = 6.3) is the reason to refine existing models for seismic hazard estimates. There are several approaches to study strong ground motion, and one of them is to model synthetic accelerograms to reconstruct the rupture process. In this paper we are mostly interested in calculating accelerograms for the city of Irkutsk, considering source spectra with two corner frequencies, primarily, to reconstruct impact from the Kultukskoe earthquake.
earthquake, source spectra, strong ground motion, the Kultukskoe earthquake, synthetic accelerogram, seismic hazard
1. Aptikaev, F. F. (2012), Instrumental scale for seismic intensity, 175 pp., Nauka i obrazovanie, Moscow (in Russian).
2. Boatwright, J. (1978), Detailed spectral analysis of two small New York State earthquakes, Bulletin of the Seismological Society of America, 68(4), 1117-1131, https://doi.org/10.1785/BSSA0680041117.
3. Boore, D. M. (2003), Simulation of Ground Motion Using the Stochastic Method, Pure and Applied Geophysics, 160(3), 635-676, https://doi.org/10.1007/pl00012553.
4. Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, 75(26), 4997-5009, https://doi.org/10.1029/JB075i026p04997.
5. Cesca, S., Y. Zhang, V. Mouslopoulou, R. Wang, J. Saul, M. Savage, S. Heimann, S.-K. Kufner, O. Oncken, and T. Dahm (2017), Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence, Earth and Planetary Science Letters, 478, 110-120, https://doi.org/10.1016/j.epsl.2017.08.024.
6. Dobrynina, A. A. (2009), Source parameters of the earthquakes of the Baikal rift system, Izvestiya, Physics of the Solid Earth, 45(12), 1093-1109, https://doi.org/10.1134/s1069351309120064.
7. Gileva, N. A., E. A. Kobeleva, Y. B. Radziminovich, V. I. Melnikova, and V. V. Chechelnitsky (2021), The September 21, 2020, Mw = 5.5, Bystraya Earthquake in the Southern Baikal Region: Preliminary Results of Instrumental and Macroseismic Observations, Seismic Instruments, 57(2), 173-186, https://doi.org/10.3103/s0747923921020237.
8. Gusev, A. A., and O. V. Pavlenko (2009), Scenario earthquake for evaluation of seismic loads in Moscow: parameters and model ground movements, Structural Mechanics and Analysis of Constructions, 61(2), 224-233 (in Russian).
9. Gusev, A. A., and A. A. Skorkina (2020), Empirical Spectral Characteristics of the Medium near Strong-Motion Seismic Stations of Kamchatka, Russian Geology and Geophysics, 61(2), 224-233, https://doi.org/10.15372/rgg2019121.
10. Haslinger, F., R. Basili, R. Bossu, C. Cauzzi, F. Cotton, H. Crowley, S. Custodio, L. Danciu, M. Locati, A. Michelini, I. Molinari, L. Ottemöller, and S. Parolai (2022), Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology, Annals of Geophysics, 65(2), DM213, https://doi.org/10.4401/ag-8767
11. Hayes, G. P., R. W. Briggs, A. Sladen, E. J. Fielding, C. Prentice, K. Hudnut, P. Mann, F. W. Taylor, A. J. Crone, R. Gold, T. Ito, and M. Simons (2010), Complex rupture during the 12 January 2010 Haiti earthquake, Nature Geoscience, 3(11), 800-805, https://doi.org/10.1038/ngeo977.
12. Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995), Constraints on seismic velocities in the Earth from traveltimes, Geophysical Journal International, 122(1), 108-124, https://doi.org/10.1111/j.1365-246x.1995.tb03540.x.
13. Mai, P. M. (2005), Hypocenter Locations in Finite-Source Rupture Models, Bulletin of the Seismological Society of America, 95(3), 965-980, https://doi.org/10.1785/0120040111.
14. Mai, P. M., and K. K. S. Thingbaijam (2014), SRCMOD: An Online Database of Finite-Fault Rupture Models, Seismological Research Letters, 85(6), 1348-1357, https://doi.org/10.1785/0220140077.
15. McKenna, F. (2011), OpenSees: A Framework for Earthquake Engineering Simulation, Computing in Science & Engineering, 13(4), 58-66, https://doi.org/10.1109/MCSE.2011.66.
16. Melnikova, V. I., N. A. Gileva, Y. B. Radziminovich, and A. I. Seredkina (2014), Kultuk earthquake August 27, 2008 with Mw = 6.3, I0 = 8-9 (Southern Baikal), in Earthquakes of the Northern Eurasia, 2008, vol. 17, pp. 386-407, GS RAS, Obninsk (in Russian).
17. Pavlenko, O. V. (2013), Simulation of Ground Motion from Strong Earthquakes of Kamchatka Region (1992-1993) at Rock and Soil Sites, Pure and Applied Geophysics, 170(4), 571-595, https://doi.org/10.1007/s00024-012-0529-x.
18. Pavlenko, O. V., and T. A. Tubanov (2017), Characteristics of radiation and propagation of seismic waves in the Baikal Rift Zone estimated by simulations of acceleration time histories of the recorded earthquakes, Izvestiya, Physics of the Solid Earth, 53(1), 18-31, https://doi.org/10.1134/s1069351317010116.
19. Pisarenko, V. F., V. V. Ruzhich, A. A. Skorkina, and E. A. Levina (2022), The Structure of Seismicity Field in the Baikal Rift Zone, Izvestiya, Physics of the Solid Earth, 58(3), 329-345, https://doi.org/10.1134/s1069351322030053.
20. Shebalin, P. N., A. D. Gvishiani, B. A. Dzeboev, and A. A. Skorkina (2022), Why Are New Approaches to Seismic Hazard Assessment Required?, Doklady Earth Sciences, 507(1), 930-935, https://doi.org/10.1134/s1028334x22700362.
21. Skorkina, A. A., and A. A. Gusev (2017), Determination of corner frequencies of source spectra for subduction earthquakes in Avacha Gulf (Kamchatka), Russian Geology and Geophysics, 58(7), 844-854, https://doi.org/10.1016/j.rgg.2017.06.007
22. Thio, H. K., and H. Kanamori (1996), Source complexity of the 1994 Northridge earthquake and its relation to aftershock mechanisms, Bulletin of the Seismological Society of America, 86(1B), S84-S92, https://doi.org/10.1785/bssa08601b0s84.
23. Vallée, M., J. Charléty, A. M. G. Ferreira, B. Delouis, and J. Vergoz (2010), SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution, Geophysical Journal International, 184(1), 338-358, https://doi.org/10.1111/j.1365-246x.2010.04836.x.
24. Wald, D. J., V. Quitoriano, T. H. Heaton, and H. Kanamori (1999), Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California, Earthquake Spectra, 15(3), 557-564, https://doi.org/10.1193/1.1586058.
25. Zorin, Y. A., V. V. Mordvinova, E. K. Turutanov, B. G. Belichenko, A. A. Artemyev, G. L. Kosarev, and S. S. Gao (2002), Low seismic velocity layers in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication, Tectonophysics, 359(3-4), 307-327, https://doi.org/10.1016/s0040-1951(02)00531-0.