с 01.01.2021 по настоящее время
Нижний Новгород, Нижегородская область, Россия
Южно-Сахалинск, Россия
сотрудник с 01.01.2003 по 01.01.2022
Нижегородский государственный технический университет им. Р. Е. Алексеева
Нижний Новгород, Нижегородская область, Россия
Южно-Сахалинск, Россия
УДК 551.466.8 Внутренние волны, внутренние приливные волны
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ОКСО 05.00.00 Науки о Земле
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
BISAC SCI SCIENCE
The study of marine wave processes was carried out according to field observations using two autonomous wave recorders, temperature and weather station installed near Cape Svobodny, south-east coast of Sakhalin (Russia). Spectral and cross-spectral analysis showed the existence of edge waves with a period of about 10.7 min. Measurements in 2021 showed that the edge wave existing from Cape Ostry to Cape Svobodny, just beyond the cape Svobodny significantly weakens and does not spread further. The analysis of temperature fluctuations for the period range 1–80 hours showed that since the periods of spectral density peaks of water temperature fluctuations for periods longer than 5 hours do not coincide with the periods of peaks of sea level fluctuations, these peaks are determined by internal waves. Temperature fluctuations with a period of 25.5 hours detected by peaks in the spectra can be excited by shelf waves with the same period because of their interaction with islands, coastal currents and baroclinic instability. The analysis of cyclone wakes based on the time course of temperature fluctuations made it possible to establish that cyclone wakes are formed when the water temperature of the upper mixed layer exceeds 10 ◦C, and internal waves with a period of about 13 hours are also present when cyclones do not move near the point of installation of devices and the water temperature is below 10 ◦C. The Burger number is determined, which makes it possible to correct the range of existence near inertial internal waves and determine this range periods of 12.1–18.2 hours. Using the results of a simple linear Phillips model, the possibility of baroclinic instability for periods of shelf waves is estimated. It is shown that baroclinic instability is possible for waves with a period of 13.1 hours, and even more so for shelf waves with a significantly longer wavelength.
internal waves; Burger number; baroclinic instability
1. Alford, M. H. (2003), Improved global maps and 54-year history of wind-work on ocean inertial motions, Geophysical Research Letters, 30(8), 1-4, https://doi.org/10.1029/2002 gl016614.
2. Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash (2016), Near-Inertial Internal Gravity Waves in the Ocean, Annual Review of Marine Science, 8(1), 95-123, https://doi.org/10.1146/annurev-marine-010814-015746.
3. Boccaletti, G., R. Ferrari, and B. Fox-Kemper (2007), Mixed layer instabilities and restratifi- cation, Journal of Physical Oceanography, 37(9), 2228-2250, https://doi.org/10.1175/jpo3101.1.
4. Buchwald, V. T., and J. K. Adams (1968), The propagation of continental shelf waves, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 305(1481), 235-250, https://doi.org/10.1098/rspa.1968.0115.
5. Cartwright, D. E. (1969), Extraordinary Tidal Currents near St Kilda, Nature, 223(5209), 928-932, https://doi.org/10.1038/223928a0.
6. Charney, J. G. (1947), The dynamics of long waves in a baroclinic westerly current, Journal of Meteorology, 4(5), 136-162, https://doi.org/10.1175/1520-0469(1947)004<0136:tdolwi>2.0.co;2.
7. Cushman-Roisin, B., and J.-M. Beckers (2010), Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 768 pp., Academic Press, London.
8. Cutchin, D. L., and R. L. Smith (1973), Continental Shelf Waves: Low-Frequency Variations in Sea Level and Currents Over the Oregon Continental Shelf, Journal of Physical Oceanog- raphy, 3(1), 73-82, https://doi.org/10.1175/1520-0485(1973)003<0073:cswlfv>2.0.co;2.
9. Darelius, E., L. H. Smedsrud, S. Osterhus, A. Foldvik, and T. Gammelsrod (2009), Structure and variability of the Filchner overflow plume, Tellus A, 61(3), 446-464, https://doi.org/https://doi.org/10.1111/j.1600-0870.2009.00391.x.
10. D’Asaro, E. A. (1985), The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer, Journal of Physical Oceanography, 15(8), 1043-1059, https://doi.org/10.1175/1520-0485(1985)015<1043:tefftw>2.0.co;2.
11. Eady, E. T. (1949), Long Waves and Cyclone Waves, Tellus, 1(3), 33-52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.
12. Efimov, V. V., E. A. Kulikov, A. B. Rabinovich, and I. V. Fine (1985), Waves in the ocean boundary regions, 280 pp., Hydrometeoizdat, Leningrad (in Russian).
13. Feng, L., C. Liu, A. Köhl, D. Stammer, and F. Wang (2021), Four Types of Baroclinic Instability Waves in the Global Oceans and the Implications for the Vertical Structure of Mesoscale Eddies, Journal of Geophysical Research: Oceans, 126(3), 1-24, https://doi.org/10.1029/2020jc016966.
14. George, T. M., G. E. Manucharyan, and A. F. Thompson (2021), Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence, Nature Communications, 12(1), 800, https://doi.org/10.1038/s41467-020-20779-9.
15. Gill, A. E. (1982), Atmosphere-Ocean Dynamics, 662 pp., Elsevier Science & Technology Books, London.
16. Gill, A. E., J. S. A. Green, and A. J. Simmons (1974), Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies, Deep Sea Research and Oceanographic Abstracts, 21(7), 499-528, https://doi.org/10.1016/0011-7471(74)90010-2.
17. Gregg, M. C. (1987), Diapycnal mixing in the thermocline: A review, Journal of Geophysical Research, 92, 5249, https://doi.org/10.1029/jc092ic05p05249.
18. Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang (2014), Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea, Journal of Geophysical Research: Oceans, 119(5), 3134-3157, https://doi.org/10.1002/2013jc009661.
19. Kamenkovich, V. M. (1973), Fundamentals of ocean dynamics, 240 pp., Hydrometeoizdat, Leningrad (in Russian).
20. Kovalev, D. P. (2018), Certificate of state registration of computer programs no 2018618773 rf (in Russian).
21. Kovalev, D. P., and P. D. Kovalev (2017), Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island, International Journal of Bifurcation and Chaos, 27(13), 1750,195, https://doi.org/10.1142/s0218127417501954.
22. Kovalev, D. P., G. V. Shevchenko, and P. D. Kovalev (2015), Excitation of edge waves by atmospheric disturbances on the southeastern shelf of Sakhalin Island, in Proceedings of the All-Russian Scientific Conference with international participation "Geodynamic processes and natural disasters. The experience of Neftegorsk", pp. 307-311, Dalnauka, Vladivostok (in Russian).
23. Kovalev, P. D., and D. P. Kovalev (2018), Long-wave processes on the southeastern shelf of Sakhalin Island, Ecological Systems and Devices (in Russian).
24. Kovalev, P. D., V. A. Squire, D. P. Kovalev, and A. I. Zaytsev (2022), Features of Formation of the Cyclone Wakes (Fluctuations in Seawater Temperature) in the Area of Cape Svobodny, the Southeastern Part of the Sakhalin Island, Physical Oceanography, 29(1), 30-46, https://doi.org/10.22449/1573-160x-2022-1-30-46.
25. Kunze, E. (1985), Near-Inertial Wave Propagation In Geostrophic Shear, Journal of Physi- cal Oceanography, 15(5), 544-565, https://doi.org/10.1175/1520-0485(1985)015<0544:niwpig>2.0.co;2.
26. Kurkina, O. E., T. G. Talipova, T. Soomere, A. A. Kurkin, and A. V. Rybin (2017), The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk, Estonian Journal of Earth Sciences, 66(4), 238-255, https://doi.org/10.3176/earth.2017.20.
27. LeBlond, P. H., and L. A. Mysak (1978), Waves in the ocean, 602 pp., Elsevier, Amsterdam.
28. Mysak, L. A. (1980a), Recent advances in shelf wave dynamics, Reviews of Geophysics, 18(1), 211, https://doi.org/10.1029/rg018i001p00211.
29. Mysak, L. A. (1980b), Topographically Trapped Waves, Annual Review of Fluid Mechanics, 12(1), 45-76, https://doi.org/10.1146/annurev.fl.12.010180.000401.
30. Parker, B. B. (2007), Tidal analysis and prediction, 378 pp., NOAA, NOS Center for Opera- tional Oceanographic Products and Services, Maryland, https://doi.org/10.25607/OBP- 191.
31. Phillips, N. A. (1954), Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model, Tellus, 6(3), 273-286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.
32. Plekhanov, F. A., and D. P. Kovalev (2016), The complex program of processing and analysis of time-series data of sea level on the basis of author’s algorithms, Geoinformatics (in Russian).
33. Pollard, R. T., and R. C. Millard (1970), Comparison between observed and simulated wind-generated inertial oscillations, Deep Sea Research and Oceanographic Abstracts, 17(4), 813-821, https://doi.org/10.1016/0011-7471(70)90043-4.
34. Price, J. F. (1981), Upper Ocean Response to a Hurricane, Journal of Physical Oceanography, 11(2), 153-175, https://doi.org/10.1175/1520-0485(1981)011<0153:uortah>2.0.co;2.
35. Price, J. F. (1983), Internal Wave Wake of a Moving Storm. Part I. Scales, Energy Budget and Observations, Journal of Physical Oceanography, 13(6), 949-965, https://doi.org/10.1 175/1520-0485(1983)013<0949:iwwoam>2.0.co;2.
36. Price, J. F., T. B. Sanford, and G. Z. Forristall (1994), Forced Stage Response to a Moving Hurricane, Journal of Physical Oceanography, 24(2), 233-260, https://doi.org/10.1175/1520-0485(1994)024<0233:fsrtam>2.0.co;2.
37. Rabinovich, A. B. (1984), Topographic vortices in the area of the Kuril-Kamchatka trench, Doklady USSR Academy of Sciences (in Russian).
38. Rabinovich, A. B. (1993), Long gravitational waves in the ocean: trapped, resonance, radiation, 240 pp., Hydrometeoizdat, Leningrad (in Russian).
39. Sanford, T. B., J. F. Price, and J. B. Girton (2011), Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats, Journal of Physical Oceanography, 41(6), 1041-1056, https://doi.org/10.1175/2010jpo4313.1.
40. Smith, K. S. (2007), The geography of linear baroclinic instability in Earth’s oceans, Journal of Marine Research, 65(5), 655-683, https://doi.org/10.1357/002224007783649484.
41. Smith, P. C. (1976), Baroclinic Instability in the Denmark Strait Overflow, Journal of Physical Oceanography, 6(3), 355-371, https://doi.org/10.1175/1520-0485(1976)006<0355:biitds>2.0.co;2.
42. Squire, V. A., D. P. Kovalev, P. D. Kovalev, I. P. Medvedev, and M. E. Kulikov (2021), A cornucopia of oscillations on the Laptev Sea shelf, Continental Shelf Research, 227, 104,514, https://doi.org/10.1016/j.csr.2021.104514.
43. Swaters, G. E. (1991), On the baroclinic instability of cold-core coupled density fronts on a sloping continental shelf, Journal of Fluid Mechanics, 224, 361-382, https://doi.org/10.1017/s0022112091001799.
44. Teague, W. J., E. Jarosz, D. W. Wang, and D. A. Mitchell (2007), Observed oceanic response over the upper continental slope and outer shelf during hurricane Ivan, Journal of Physical Oceanography, 37(9), 2181-2206, https://doi.org/10.1175/jpo3115.1.
45. Tskhai, Z. R. (2017), Spatial and temporal variability of chlorophyll-a concentration in the surface layer of the Sea of Okhotsk and adjacent water areas according to satellite data, 157 pp., Publishing house of the Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow.
46. Vallis, G. K. (2017), Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-Scale Circulation, 946 pp., Cambridge University Press, https://doi.org/10.1017/9781107588 417.
47. Yang, B., Y. Hou, P. Hu, Z. Liu, and Y. Liu (2015), Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea, Journal of Geophysical Research: Oceans, 120(5), 3817-3836, https://doi.org/10.1002/2015jc010783.