Methane in the Water Column of the Gdansk Deep (Baltic Sea): Seasonal and Vertical Variability
Аннотация и ключевые слова
Аннотация (русский):
The study of the vertical distribution of methane dissolved in water and related parameters (water temperature and salinity, dissolved oxygen concentration) was carried out in 2021–2023 at the offshore carbon supersite Rosyanka in the Gdansk Deep of the Baltic Sea. Measurements with such frequency (a total of 16 surveys) were carried out in the region for the first time. Methane concentrations varied over a fairly wide range (0.000–1.122 μmol/L), and increased with depth, which is a typical distribution for the Baltic Sea and is associated with the vertical stratification of the water column. Single maximum values were characteristic of the layer extending from the bottom to the upper boundary of the halocline, which indicates the flow of methane from bottom sediments into the water column. In the near-surface layer (5–15 m), a weakly pronounced peak in methane concentrations was observed, which is a manifestation of the “oceanic methane paradox”. No pronounced seasonality was detected in the vertical distribution of dissolved methane; the correlation between temperature, salinity, oxygen, and methane content turned out to be low.

Ключевые слова:
dissolved methane, carbon supersite, thermohaline conditions, hypoxia
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Abrahamsson, K., E. Damm, G. Björk, et al. (2024), Methane plume detection after the 2022 Nord Stream pipeline explosion in the Baltic Sea, Scientific Reports, 14(1), https://doi.org/10.1038/s41598-024-63449-2.

2. Axell, L. B. (1998), On the variability of Baltic Sea deepwater mixing, Journal of Geophysical Research: Oceans, 103(C10), 21,667–21,682, https://doi.org/10.1029/98JC01714.

3. Bange, H. W., U. H. Bartell, S. Rapsomanikis, and M. O. Andreae (1994), Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochemical Cycles, 8(4), 465–480, https://doi.org/10.102 9/94GB02181.

4. Bange, H. W., K. Bergmann, H. P. Hansen, et al. (2010), Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea), Biogeosciences, 7(4), 1279–1284, https://doi.org/10.5194/bg-7-1279-2010.

5. Bashirova, L., V. Sivkov, M. Ulyanova, A. Gavrikov, and A. Artamonov (2023), Climate and environmental monitoring of the Baltic Sea: general principles and approaches, Reliability: Theory & Applications. Special Issue, 5(75), 164–171, https://doi.org/10.24412/1932-2321-2023-575-164-171.

6. Berndmeyer, C., V. Thiel, O. Schmale, and M. Blumenberg (2013), Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea), Organic Geochemistry, 55, 103–111, https://doi.org/10.1016/j.orggeochem.2012.11.010.

7. Bernikova, T. A., V. F. Dubravin, H. N. Nagornova, and Z. I. Stont (2007), Climatic seasons of the Southern Baltic Sea, in V International Scientific Conference "Innovations in Science and Education - 2007". Part 1, pp. 53–55, KSTU, Kaliningrad (in Russian).

8. Bolshakov, A. M., and A. V. Egorov (1987), On the use of the phase-equilibrium degassing technique in gasometric studies, Oceanology, 27(5), 861–862 (in Russian).

9. Brodecka, A., P. Majewski, J. Bolałek, and Z. Klusek (2013), Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea, Oceanologia, 55(4), 951–978, https://doi.org/10.5697/oc.55-4.951.

10. Bukanova, T. V., Z. I. Stont, and O. A. Gushchin (2015), Variability of sea surface temperature in the South-East Baltic according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 12(4), 86–96 (in Russian), EDN: UITZRP.

11. Bukanova, T. V., E. S. Bubnova, and S. V. Aleksandrov (2022), Remote monitoring of the offshore site of the Rosyanka carbon polygon (the Baltic Sea): First results, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 19(6), 234–247, https://doi.org/10.21046/2070-7401-2022-19-6-234-247 (in Russian).

12. Cicerone, R. J., and R. S. Oremland (1988), Biogeochemical aspects of atmospheric methane, Global Biogeochemical Cycles, 2(4), 299–327, https://doi.org/10.1029/GB002i004p00299.

13. Conrad, R., and W. Seiler (1988), Methane and hydrogen in seawater (Atlantic Ocean), Deep Sea Research Part A. Oceanographic Research Papers, 35(12), 1903–1917, https://doi.org/10.1016/0198-0149(88)90116-1

14. Damm, E., E. Helmke, S. Thoms, et al. (2010), Methane production in aerobic oligotrophic surface water in the central Arctic Ocean, Biogeosciences, 7(3), 1099–1108, https://doi.org/10.5194/bg-7-1099-2010.

15. Donis, D., S. Flury, A. Stöckli, et al. (2017), Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake, Nature Communications, 8(1), https://doi.org/10.1038/s41467-017-01648-4.

16. Elken, J. (1996), Deep water overflow, circulation and vertical exchange in the Baltic Proper, 91 pp., Estonian Mar. Inst., Tallinn.

17. Emelyanov, E. M. (Ed.) (2002), Geology of the Gdansk Basin. Baltic Sea, 496 pp., Yantarny skaz, Kaliningrad (in Russian).

18. Galchenko, V. F. (2001), Methanotrophic bacteria, 500 pp., GEOS, Moscow (in Russian).

19. Gentz, T., E. Damm, J. Schneider von Deimling, et al. (2014), A water column study of methane around gas flares located at the West Spitsbergen continental margin, Continental Shelf Research, 72, 107–118, https://doi.org/10.1016/j.csr.2013.07.013.

20. Geodekyan, A. A., V. Y. Trotsyuk, V. I. Avilov, et al. (1989), New data on the methane content in modern sediments of the Baltic Sea, Reports of the USSR Academy of Sciences, 250(1), 160–164 (in Russian).

21. Geodekyan, A. A., V. Y. Trotsyuk, and A. I. Blazhchishin (1990), Geoacoustic and gas lithogeochemical studies in the Baltic Sea. Geological features of fluid flow discharge areas, 164 pp., IO AN USSR, Moscow (in Russian).

22. Gindorf, S., H. W. Bange, D. Booge, and A. Kock (2022), Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018, Biogeosciences, 19(20), 4993–5006, https://doi.org/10.5194/bg-19-4993-2022.

23. Grossart, H.-P., K. Frindte, C. Dziallas, W. Eckert, and K. W. Tang (2011), Microbial methane production in oxygenated water column of an oligotrophic lake, Proceedings of the National Academy of Sciences, 108(49), 19,657–19,661, https://doi.org/10.1073/pnas.1110716108

24. Gülzow, W., G. Rehder, J. Schneider von Deimling, T. Seifert, and Z. Tóth (2013), One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity, Biogeosciences, 10(1), 81–99, https://doi.org/10.5194/bg-10-81-2013.

25. Heilig, G. K. (1994), The greenhouse gas methane (CH4): Sources and sinks, the impact of population growth, possible interventions, Population and Environment, 16, 109–137.

26. IPCC (2023), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 184 pp., IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647.

27. Jakobs, G., P. Holtermann, C. Berndmeyer, et al. (2014), Seasonal and spatial methane dynamics in the water column of the central Baltic Sea (Gotland Sea), Continental Shelf Research, 91, 12–25, https://doi.org/10.1016/j.csr.2014.07.005.

28. Jaśniewicz, D., Z. Klusek, A. Brodecka-Goluch, and J. Bolałek (2018), Acoustic investigations of shallow gas in the southern Baltic Sea (Polish Exclusive Economic Zone): a review, Geo-Marine Letters, 39(1), 1–17, https://doi.org/10.1007/s00367-018-0555-5.

29. Kanapatskiy, T. A., M. O. Ulyanova, T. R. Iasakov, O. V. Shubenkova, and N. V. Pimenov (2022), Microbial Processes of Carbon and Sulfur Cycles in Sediments of the Russian Sector of the Baltic Sea, in The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, https://doi.org/10.1007/698_2021_818.

30. Karl, D. M., L. Beversdorf, K. M. Björkman, et al. (2008), Aerobic production of methane in the sea, Nature Geoscience, 1(7), 473–478, https://doi.org/10.1038/ngeo234

31. Kirschke, S., P. Bousquet, P. Ciais, et al. (2013), Three decades of global methane sources and sinks, Nature Geoscience, 6(10), 813–823, https://doi.org/10.1038/ngeo1955.

32. Kladchenko, E. S., E. S. Chelebieva, M. S. Podolskaya, et al. (2024), Shift in hemocyte immune parameters of marine bivalve Mytilus galloprovincialis (Lamarck, 1819) after exposure to methane, Marine Pollution Bulletin, 201, 116,174, https://doi.org/10.1016/j.marpolbul.2024.116174.

33. Klintzsch, T., H. Geisinger, A. Wieland, et al. (2023), Stable Carbon Isotope Signature of Methane Released From Phytoplankton, Geophysical Research Letters, 50(12), https://doi.org/10.1029/2023GL103317.

34. Korneeva, A. O., and M. O. Ulyanova (2023), Methane concentrations in the surface and bottom water layers in the southeastern part of the Baltic sea in summer, autumn and winter sesons of 2022, in Proceedings of the All-Russian Scientific and Practical Conference "Hydrometeorology and Atmospheric Physics: Modern Achievements and Development Trends", pp. 300–302, Publishing and Printing Association of Higher Education Institutions, St. Petersburg (in Russian), EDN: SEMUJW.

35. Krechik, V. A., M. V. Kapustina, E. S. Bubnova, and V. A. Gritsenko (2017), Abiotic conditions of bottom waters in the Gdansk deep of the Baltic sea in 2016, Scientific notes of the RGGMU, 48, 186–194 (in Russian), EDN: ZWUOPX.

36. Kudryavtseva, E. A., and S. V. Aleksandrov (2019), Hydrological and Hydrochemical Underpinnings of Primary Production and Division of the Russian Sector in the Gdansk Basin of the Baltic Sea, Oceanology, 59(1), 49–65, https://doi.org/10.1134/S0001437019010077.

37. Laier, T., and J. B. Jensen (2007), Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region, Geo-Marine Letters, 27(2–4), 127–141, https://doi.org/10.1007/s00367-007-0066-2.

38. Lainela, S., E. Jacobs, S. Stoicescu, G. Rehder, and U. Lips (2024), Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea, Preprint egusphere-2024-598, https://doi.org/10.5194/egusphere-2024-598.

39. Lein, A. Y., and M. V. Ivanov (2009), Biogeochemical cycle of methane in the ocean, 546 pp., Nauka, Moscow (in Russian), EDN: QKIMET.

40. Ma, X., M. Sun, S. T. Lennartz, and H. W. Bange (2020), A decade of methane measurements at the Boknis Eck Time Series Station in Eckernförde Bay (southwestern Baltic Sea), Biogeosciences, 17(13), 3427–3438, https://doi.org/10.5194/bg-17-3427-2020.

41. Majewski, P., and Z. Klusek (2011), Expressions of shallow gas in the Gdańsk Basin, Zeszyty naukowe Akademii Marynarki Wojennej, 4(187), 61–71.

42. Malakhova, T. V., I. N. Ivanova, A. A. Budnikov, A. I. Murashova, and L. V. Malakhova (2021), Distribution of Hydrological Parameters over the Methane Seep Site in the Golubaya Bay (the Black Sea): A Connection with Submarine Freshwater Discharge, Russian Meteorology and Hydrology, 46(11), 792–798, https://doi.org/10.3103/S1068373921110091.

43. Malakhova, T. V., A. I. Khurchak, V. V. Voitsekhovskaia, and A. V. Fedirko (2024), Distribution of methane in the upper water layer of the northern Black Sea: Seasonal and daily trends and seawater-air emissions, Continental Shelf Research, 281, 105,320, https://doi.org/10.1016/j.csr.2024.105320.

44. Markus Meier, H. E. (2007), Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea, Estuarine, Coastal and Shelf Science, 74(4), 610–627, https://doi.org/10.1016/j.ecss.2007.05.019.

45. Mishukova, G. I., A. I. Obzhirov, and V. F. Mishukov (2007), Methane contents in fresh and sea waters and it’s fluxes on border of water-atmosphere at far Eastern region of Asia, 157 pp., Dalnauka, Vladivostok (in Russian), EDN: TSJECQ.

46. Mohrholz, V. (2018), Major Baltic Inflow Statistics - Revised, Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00384.

47. Mosharov, S., I. Mosharova, K. Borovkova, and E. Bubnova (2024), Variability of Primary Productivity as an Initial Link in Carbon Flux Under the Influence of Hydrological Conditions in the Baltic Sea, Russian Journal of Earth Sciences, pp. 1–14, https://doi.org/10.2205/2024ES000888.

48. Mosharov, S. A., I. V. Mosharova, O. A. Dmitrieva, A. S. Semenova, and M. O. Ulyanova (2022), Seasonal Variability of Plankton Production Parameters as the Basis for the Formation of Organic Matter Flow in the Southeastern Part of the Baltic Sea, Water, 14(24), 4099, https://doi.org/10.3390/w14244099.

49. Nausch, G., M. Naumann, L. Umlauf, et al. (2016), Hydrographic-hydrochemical assessment of the Baltic Sea 2015, Marine Science Reports, (101), https://doi.org/10.12754/msr-2016-0101.

50. Piechura, J., and A. Beszczynska-Moller (2003), Inflow waters in the deep regions of the southern Baltic Sea - Transport and transformations, Oceanologia, 46(1), 4.

51. Piker, L., R. Schmaljohann, and J. F. Imhoff (1998), Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993-1996), Aquatic Microbial Ecology, 14, 183–193, https://doi.org/10.3354/ame014183.

52. Pimenov, N. V., M. O. Ul’yanova, T. A. Kanapatskii, V. V. Sivkov, and M. V. Ivanov (2008), Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea, Microbiology, 77(5), 579–586, https://doi.org/10.1134/S0026261708050111.

53. Pimenov, N. V., M. O. Ulyanova, T. A. Kanapatsky, et al. (2010), Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea, Geo-Marine Letters, 30(3–4), 439–448, https://doi.org/10.1007/s00367-010-0200-4.

54. Rak, D. (2016), The inflow in the Baltic Proper as recorded in January-February 2015, Oceanologia, 58(3), 241–247, https://doi.org/10.1016/j.oceano.2016.04.001.

55. Reeburgh, W. S. (2007a), Global Methane Biogeochemistry, in Treatise on Geochemistry, Elsevier, https://doi.org/10.1016/B0-08-043751-6/04036-6.

56. Reeburgh, W. S. (2007b), Oceanic Methane Biogeochemistry, Chemical Reviews, 107(2), 486–513, https://doi.org/10.1021/cr050362v.

57. Reindl, A., and J. Bolałek (2012), Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (Southern Baltic), Oceanological and Hydrobiological Studies, 41(3), 40–47, https://doi.org/10.2478/s13545-012-0026-y.

58. Reissmann, J. H., H. Burchard, R. Feistel, et al. (2009), Vertical mixing in the Baltic Sea and consequences for eutrophication - A review, Progress in Oceanography, 82(1), 47–80, https://doi.org/10.1016/j.pocean.2007.10.004.

59. Saunois, M., P. Bousquet, B. Poulter, et al. (2016), The global methane budget 2000-2012, Earth System Science Data, 8(2), 697–751, https://doi.org/10.5194/essd-8-697-2016.

60. Schmale, O., J. Schneider von Deimling, W. Gülzow, et al. (2010), Distribution of methane in the water column of the Baltic Sea, Geophysical Research Letters, 37(12), https://doi.org/10.1029/2010GL043115.

61. Schmale, O., J. Wäge, V. Mohrholz, et al. (2017), The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea, Limnology and Oceanography, 63(1), 412–430, https://doi.org/10.1002/lno.10640

62. Stawiarski, B., S. Otto, V. Thiel, et al. (2019), Controls on zooplankton methane production in the central Baltic Sea, Biogeosciences, 16(1), 1–16, https://doi.org/10.5194/bg-16-1-2019.

63. Steinle, L., J. Maltby, T. Treude, et al. (2017), Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters, Biogeosciences, 14(6), 1631–1645, https://doi.org/10.5194/bg-14-1631-2017.

64. Stont, Z., T. Bukanova, and O. Goushchin (2015), Variability of sea surface temperature in the South-Eastern Baltic from MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 12, 86–96 (in Russian), EDN: UITZRP.

65. Stont, Z., T. Bukanova, and E. Krek (2020), Variability of climatic characteristics of the coastal part of the south-eastern Baltic at the beginning of the 21st century, Bulletin of the Immanuel Kant Baltic Federal University, 1(4), 81–94 (in Russian), EDN: CYZSPJ.

66. Tang, K. W., R. N. Glud, A. Glud, S. Rysgaard, and T. G. Nielsen (2011), Copepod guts as biogeochemical hotspots in the sea: Evidence from microelectrode profiling of Calanus spp, Limnology and Oceanography, 56(2), 666–672, https://doi.org/10.4319/lo.2011.56.2.0666.

67. Thießen, O., M. Schmidt, F. Theilen, M. Schmitt, and G. Klein (2006), Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea, Continental Shelf Research, 26(19), 2469– 2483, https://doi.org/10.1016/j.csr.2006.07.020.

68. Ulyanova, M., and A. Danchenkov (2016), Maritime potential of the Russian sector of the south-eastern Baltic Sea and its spatial usage, Baltica, 29(2), 133–144, https://doi.org/10.5200/baltica.2016.29.12.

69. Ulyanova, M., V. Sivkov, T. Kanapatskij, and N. Pimenov (2013), Seasonal variations in methane concentrations and diffusive fluxes in the Curonian and Vistula lagoons, Baltic Sea, Geo-Marine Letters, 34(2–3), 231–240, https://doi.org/10.1007/s00367-013-0352-0.

70. Ulyanova, M. O., V. V. Sivkov, L. D. Bashirova, et al. (2022a), Oceanological Research of the Baltic Sea in the 51st Cruise of the PV Akademik Sergey Vavilov (June-July 2021), Oceanology, 62(4), 578–580, https://doi.org/10.1134/S0001437022040130.

71. Ulyanova, M. O., V. V. Sivkov, L. D. Bashyrova, et al. (2022b), Oceanological Research in the Baltic Sea during the 56th Cruise of the Passenger Vessel Akademik Ioffe, Oceanology, 62(1), 136–138, https://doi.org/10.1134/s0001437022010167.

72. Ulyanova, M. O., V. V. Sivkov, S. V. Aleksandrov, et al. (2023), Baltic Sea Research on Cruise 61 of the R/V Akademik Ioffe (June-July 2022), Oceanology, 63(5), 752–754, https://doi.org/10.1134/s000143702305017x.

73. Voigt, C. (2023), The power of the Paris Agreement in international climate litigation, Review of European, Comparative & International Environmental Law, 32(2), 237–249, https://doi.org/10.1111/reel.12514.

74. Weber, S., J. Beutel, R. Da Forno, et al. (2019), A decade of detailed observations (2008-2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH), Earth System Science Data, 11(3), 1203–1237, https://doi.org/10.5194/essd-11-1203-2019.

Войти или Создать
* Забыли пароль?