с 01.01.2004 по настоящее время
Архангельск, Архангельская область, Россия
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.19 Геолого-геофизические исследования глубинного строения Земли
ГРНТИ 38.57 Методы поисков и разведки месторождений полезных ископаемых
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI032000 Physics / Geophysics
BISAC SCI003000 Applied Sciences
BISAC SCI031000 Earth Sciences / Geology
BISAC SCI082000 Earth Sciences / Seismology & Volcanism
BISAC SCI SCIENCE
Prospecting for kimberlite pipes can be challenging due to their small size in plan. One potential solution to this problem is to search for kimberlite-controlling faults. In addition, information on the depth structure of kimberlite-controlling faults is important for studying pipe formation patterns. However, this approach is rarely used in practice due to the complex structure of the host environment. This issue is particularly pressing in areas where there is a large layer of rocks overlying the pipes, such as the Arkhangelsk diamondiferous province. The paper presents a review of the host environment structure of pipes in the Arkhangelsk diamondiferous province using the microseismic sounding method. The method was selected for its high horizontal resolving power, which enabled us to obtain more detailed information. The study reveals that the controlling structures consist of a sequence of vertical elementary faults that traverse the entire thickness of the Vendian sedimentary cover and extend into the crystalline basement. Additionally, the controlling structures do not penetrate above the Ust-Pinezhskaya formation of the Vendian sediments when at a distance from the pipes. Shear wave velocities within these faults are reduced by more than two times compared to the undisturbed medium. The pipes are interconnected with one of the elementary faults. Therefore, the method of microseismic sounding can confidently identify kimberlite-controlling structures in a complex host medium. Further application of these results could enhance the efficiency of both the search for new deposits and the study of the patterns of formation of pipes.
Microseisms, Velocity analysis, Passive method, Faults, Kimberlite pipe
1. Baluev, A. S., V. A. Zhuravlev, E. N. Terekhov, and E. S. Przhialgovskiy (2012), Tectonics of the White Sea and adjacent areas (The explanatory notes to "The Tectonic Map of the White Sea and Adjacent Areas", at a Scale of 1:1500000), 104 pp., GEOS, Moscow (in Russian).
2. Baluev, A. S., V. A. Zhuravlev, and E. N. Terekhov (2022), Paleorift system of the White Sea, in Lithospheric structure and dynamics of the White Sea region, pp. 23–40, Ministry of Science and Higher Education of the Russian Federation, Federal Research Center "Karelian Research Center, Russian Academy of Sciences", Institute of Geology KaRC RAS, Petrozavodsk (in Russian), EDN: https://elibrary.ru/OAIZKT.
3. Bath, M. (1974), Spectral analysis in geophysics, 563 pp., Elsivier, Amsterdam.
4. Bogatikov, O. A., V. K. Garanin, V. A. Kononova, et al. (1999), Arkhangelsk diamondiferous province (geology, petrography, geochemistry and mineralogy), 524 pp., MSU, Moscow (in Russian).
5. Danilov, K. B., N. Y. Afonin, and A. I. Koshkin (2017), Structure of Pionerskaya breccia pipe at the Arkhangelsk diamond-bearing area based on data on passive seismic methods, Vestnik KRAUNTs, Nauki o Zemle, (2(34)), 90–98 (in Russian). EDN: https://elibrary.ru/YTNCNX
6. Danilov, K. B., E. Y. Yakovlev, and N. Y. Afonin (2021), Study of Deep Structure of the Kimberlite Pipe Named After M. Lomonosov of the Arkhangelsk Diamondiferous Province Obtained by Joint Using of Passive Seismic and Radiometric Methods, Pure and Applied Geophysics, 178(10), 3933–3952, https://doi.org/10.1007/s00024-021-02864-2. EDN: https://elibrary.ru/KBOOIC
7. Danilov, K. B., E. Y. Yakovlev, N. Y. Afonin, and S. V. Druzhinin (2022), Deep structure of the Verkhnetovskaya kimberlite pipe in the Arkhangelsk diamondiferous province according to passive seismic and radiological methods, Geophysical Prospecting, 71(9), 1873–1885, https://doi.org/10.1111/1365-2478.13254. EDN: https://elibrary.ru/NVXMHW
8. Eddy, C. L., and G. Ekström (2014), Local amplification of Rayleigh waves in the continental United States observed on the USArray, Earth and Planetary Science Letters, 402, 50–57, https://doi.org/10.1016/j.epsl.2014.01.013.
9. Frantsuzova, V. I., and K. B. Danilov (2016), The structure of the Lomonosov volcanic pipe in the Arkhangel’sk diamond province from anomalies of the microseismic field, Journal of Volcanology and Seismology, 10(5), 339–346, https://doi.org/10.1134/s074204631605002x. EDN: https://elibrary.ru/YVGSEB
10. Gorbatikov, A. V. (2006), Exploration seismology method. Patent RU 2 271 554 C1, Federal service for intellectual property, patents and trademarks, Moscow, EDN: https://elibrary.ru/MMZEAI.
11. Gorbatikov, A. V., M. Y. Stepanova, and G. E. Korablev (2008), Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium, Izvestiya, Physics of the Solid Earth, 44(7), 577–592, https://doi.org/10.1134/s1069351308070082. EDN: https://elibrary.ru/LLDAHH
12. Gorbatikov, A. V., N. V. Larin, E. I. Moiseev, and A. V. Belyashov (2009), The microseismic sounding method: Application for the study of the buried diatreme structure, Doklady Earth Sciences, 428(1), 1222–1226, https://doi.org/10.1134/s1028334x0907040x. EDN: https://elibrary.ru/PDCLEW
13. Gorbatikov, A. V., F. G. Montesinos, J. Arnoso, et al. (2013), New Features in the Subsurface Structure Model of El Hierro Island (Canaries) from Low-Frequency Microseismic Sounding: An Insight into the 2011 Seismo-Volcanic Crisis, Surveys in Geophysics, 34(4), 463–489, https://doi.org/10.1007/s10712-013-9240-4. EDN: https://elibrary.ru/RFHFRN
14. Gorbatikova, A. V., and A. A. Tsukanov (2011), Simulation of the Rayleigh waves in the proximity of the scattering velocity heterogeneities. Exploring the capabilities of the microseismic sounding method, Izvestiya, Physics of the Solid Earth, 47(4), 354–369, https://doi.org/10.1134/s1069351311030013. EDN: https://elibrary.ru/OICBWH
15. Gubaidulin, M. G. (2001), Physico-geological models of prospecting objects, in Lithosphere and hydrosphere of the European North of Russia. Geoecological Problems, pp. 57–68, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (in Russian).
16. Ignatov, P. A., A. V. Bolonin, B. A. Kalmykov, et al. (2008), Paleotectonic structures in Zimniy bereg diamandiferous area of Arkhangelsk region, Bulletin of the Moscow Society of Naturalists. Department of Geology, 83(3), 13–20 (in Russian), EDN: https://elibrary.ru/JSEAUN.
17. Ignatov, P. A., A. V. Bolonin, I. D. Vasilyev, et al. (2009), Contacts of Arkhangelskaya Kimberlite Pipe and Deformations of Enclosing and Overlying Rocks, Proceedings of Higher Educational Establishments. Geology and Exploration, 5, 28–34 (in Russian), EDN: https://elibrary.ru/LLZWEL.
18. Ignatov, P. A., A. V. Bolonin, I. D. Vasiliev, et al. (2012), Folded and ruptural deformations in the Bearing and Capping rock stratas of kimberlite in the pit of Arkhangelsk pipe, Ores and Metals, 1, 42–48 (in Russian), EDN: https://elibrary.ru/OWLRRD.
19. Ignatov, P. A., N. R. Zaripov, V. Kim, and A. P. Gunin (2015), Types of clarified red-brown kimberlite-bearing VendCambrian rocks of Zimneberezhniy district of Arkhangelsk region, Proceedings of Higher Educational Establishments. Geology and Exploration, (2), 15–21 (in Russian), EDN: https://elibrary.ru/UARLHJ.
20. Kalinin, O. I. (Ed.) (1989), Report on the research work "Development and implementation of seismic survey methodology in the search for kimberlite pipes in the South-Eastern Belomorye", 87 pp., NPO "Rudgeofizika", Leningrad (in Russian).
21. Kiselev, G. P., K. B. Danilov, E. U. Yakovlev, and S. V. Druzhinin (2017), Radiometric and seismic study of Chidvinskaya kimberlite pipe (Arkhangelsk diamondiferous province, North of the East European Craton, Russia), Geofísica Internacional, 56(2), 147–155, https://doi.org/10.22201/igeof.00167169p.2017.56.2.1762. EDN: https://elibrary.ru/XXWEPB
22. Kugaenko, Y. A., V. A. Saltykov, A. V. Gorbatikov, and M. Y. Stepanova (2018), Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data, Izvestiya, Physics of the Solid Earth, 54(3), 444–465, https://doi.org/10.1134/s1069351318030059. EDN: https://elibrary.ru/XXFQMH
23. Kutinov, Y. G., and Z. B. Chistova (2004), Hierarchical series of manifestations of alkaline-ultrabasic magmatism in the Arkhangelsk diamondiferous province. Their reflection in geological and geophysical materials, 268 pp., Pravda Severa, Arkhangelsk (in Russian).
24. Lin, F. C., V. C. Tsai, and M. H. Ritzwoller (2012), The local amplification of surface waves: A new observable to constrain elastic velocities, density, and anelastic attenuation, Journal of Geophysical Research: Solid Earth, 117(B6), https://doi.org/10.1029/2012jb009208.
25. Milashev, V. A. (1984), Explosion pipes, 268 pp., Nedra, Leningrad (in Russian).
26. Popov, D. V., K. D. Danilov, R. A. Zhostkov, et al. (2014), Processing the digital microseism recordings using the Data Analysis Kit (DAK) software package, Seismic Instruments, 50(1), 75–83, https://doi.org/10.3103/s074792391401006x EDN: https://elibrary.ru/NWGKPG
27. Sablukov, S. M. (1987), Some features of the internal structure of kimberlite pipes, Proceedings of the Central Research Institute of Geology and Geophysics, 218, 37–41 (in Russian).
28. Shirobokov, V. N. (1997), Some features of the deep structure of the Zimneberezhny diamondiferous region, Prospect and protection of mineral resources, 5, 21–25 (in Russian).
29. Stankovsky, A. F. (1997), Wend of the South-Eastern Belomorie, Prospect and protection of mineral resources, 5, 4–9 (in Russian).
30. Stankovsky, A. F., E. M. Verichev, and M. P. Dobeiko (1985), Chapter 3. Vendian of the South-Eastern Belomoria, in Vendian system. Volume 2, pp. 67–75, Nauka, Moscow (in Russian).
31. Stogniy, V. V., and Y. V. Korotkov (2010), Search for kimberlite bodies by the method of transient processes, 121 pp., Malotirazhnaya tipografiya 2D, Novosibirsk (in Russian), EDN:KPJDSQ.
32. Tretyachenko, V. V., A. V. Samsonov, A. A. Nosova, and K. V. Garanin (2013), Geotectonic position and main aspects of mineragenic zoning of early Hercynian kimberlite complexes and convergent rocks of the Arkhangelsk picritekimberlite region, in Collection of publications based on the results of the V and VI annual scientific readings named after G.P. Kudryavtseva, pp. 115–137, Institute of Applied Mineralogy, Moscow (in Russian).
33. Ustinov, V. N., I. I. Mikoev, and G. F. Piven (2022), Prospecting models of primary diamond deposits of the north of the East European Platform, Journal of Mining Institute, 255, 299–318, https://doi.org/10.31897/pmi.2022.49. EDN: https://elibrary.ru/FRXOMH
34. Vasilyev, I. D. (2010), Geological structures in the near-pipe zone of the Arkhangelskaya pipe and their use to find diamond deposits in the Zimneberezhny area, candthesis, MGRI-RGGRU, Moscow (in Russian).