сотрудник с 01.01.2024 по настоящее время
Институт океанологии им. П.П. Ширшова РАН (Лаборатория цунами им. С.Л. Соловьева, старший научный сотрудник)
с 01.01.2023 по настоящее время
Москва, г. Москва и Московская область, Россия
сотрудник
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
ВАК 1.6 Науки о Земле и окружающей среде
УДК 550.34.013.4 Моделирование
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.31 Физика Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.06.01 Науки о Земле
ББК 263 Геологические науки
ББК 26 Науки о Земле
ТБК 6323 Сейсмология
ТБК 63 Науки о Земле. Экология
BISAC SCI082000 Earth Sciences / Seismology & Volcanism
BISAC SCI SCIENCE
In less than six years, three devastating earthquakes with magnitude exceeding 8.0 have occurred over the Chilean subduction zone. These events were quite well recorded by permanent GNSS stations. We used finite element modeling for a spherically symmetric layered Earth and machine learning methods to investigate the geodynamic processes preceding and accompanying the Chilean earthquake sequence. We find that preseismic coupling before all events is strongly correlated with the coseismic slip distribution, while afterslip primarily located around the coseismic slip patches. We also found that large geologic structures of the oceanic plate have a decisive influence on the development of geodynamic processes in the rupture zones of large Chilean earthquakes.
Chilean subduction zone, strong earthquakes, geodynamic processes, numerical modeling, machine learning
1. Gill P. E., Murray W., Saunders M. A., et al. Procedures for optimization problems with a mixture of bounds and general linear constraints // ACM Transactions on Mathematical Software. — 1984. — Vol. 10, no. 3. — P. 282–298. — DOI:https://doi.org/10.1145/1271.1276.
2. Gusman A. R., Murotani S., Satake K., et al. Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean‐wide tsunami waveforms and GPS data // Geophysical Research Letters. — 2015. — Vol. 42, no. 4. — P. 1053–1060. — DOI:https://doi.org/10.1002/2014gl062604.
3. Heidarzadeh M., Murotani S., Satake K., et al. Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data // Geophysical Research Letters. — 2016. — Vol. 43, no. 2. — P. 643–650. — DOI:https://doi.org/10.1002/2015gl067297.
4. Klein E., Vigny C., Fleitout L., et al. A comprehensive analysis of the Illapel 2015 Mw 8.3 earthquake from GPS and InSAR data // Earth and Planetary Science Letters. — 2017. — Vol. 469. — P. 123–134. — DOI:https://doi.org/10.1016/j.epsl.2017.04.010.
5. Lay T., Yue H., Brodsky E. E., et al. The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence: Lay et al.: April 1, 2014 Iquique Mw 8.1 earthquake // Geophysical Research Letters. — 2014. — Vol. 41, no. 11. — P. 3818–3825. — DOI:https://doi.org/10.1002/2014gl060238.
6. Li S., Chen L. Vertical Crustal Deformation Due To Viscoelastic Earthquake Cycles at Subduction Zones: Implications for Nankai and Cascadia // Journal of Geophysical Research: Solid Earth. — 2024. — Vol. 129, no. 8. — DOI:https://doi.org/10.1029/2024jb028817.
7. Lin Y.-n. N., Sladen A., Ortega‐Culaciati F., et al. Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect // Journal of Geophysical Research: Solid Earth. — 2013. — Vol. 118, no. 6. — P. 3142–3159. — DOI:https://doi.org/10.1002/jgrb.50207.
8. Maldonado V., Contreras M., Melnick D. A comprehensive database of active and potentially-active continental faults in Chile at 1:25,000 scale // Scientific Data. — 2021. — Vol. 8, no. 1. — DOI:https://doi.org/10.1038/s41597-021-00802-4.
9. Nishimura T., Thatcher W. Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake // Journal of Geophysical Research: Solid Earth. — 2003. — Vol. 108, B8. — DOI:https://doi.org/10.1029/2002jb002191.
10. Pollitz F. F. Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth // Geophysical Journal International. — 1996. — Vol. 125, no. 1. — P. 1–14. — DOI:https://doi.org/10.1111/j.1365-246x.1996.tb06530.x.
11. Pulido N., Yagi Y., Kumagai H., et al. Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile // Earth, Planets and Space. — 2011. — Vol. 63, no. 8. — P. 955–959. — DOI:https://doi.org/10.5047/eps.2011.04.008.
12. Sobrero F. S., Bevis M., Gómez D. D., et al. Logarithmic and exponential transients in GNSS trajectory models as indicators of dominant processes in postseismic deformation // Journal of Geodesy. — 2020. — Vol. 94, no. 9. — DOI:https://doi.org/10.1007/s00190-020-01413-4.
13. Steblov G., Vladimirova I. Geodetic Inversions and Applications in Geodynamics // Applications of Data Assimilation and Inverse Problems in the Earth Sciences. — Cambridge University Press, 2023. — P. 278–292. — DOI:https://doi.org/10.1017/9781009180412.019.
14. Truong C., Oudre L., Vayatis N. Selective review of offline change point detection methods // Signal Processing. — 2020. — Vol. 167. — DOI:https://doi.org/10.1016/j.sigpro.2019.107299.
15. Wang K., Tréhu A. M. Invited review paper: Some outstanding issues in the study of great megathrust earthquakes - The Cascadia example // Journal of Geodynamics. — 2016. — Vol. 98. — P. 1–18. — DOI:https://doi.org/10.1016/j.jog.2016.03.010.




