Strong earthquake-prone areas recognition (M ≥ 6.0) in the Caucasus is performed by means of the new "Barrier-3" pattern recognition algorithm. The obtained result is compared with potentially high seismicity zones recognized previously using the "Cora-3" pattern recognition algorithm. It is proposed to define an interpretation of the integral recognition result by the "Barrier-3" and "Cora-3" algorithms as a fuzzy set of recognition objects in the vicinity of which strong earthquakes may occur in the Caucasus.
Earthquake-prone areas recognition, EPA, Cora-3, Barrier-3, Caucasus, seismic hazard assessment, fuzzy set
1. Alekseevskaya, M., A. Gabrielov, I. Gelfand, et al. (1977) , Formal morphostructural zoning of mountain territories, Geophysics, 42, no. 2, p. 227-233.
2. Bongard, M. M., et al. (1966) , Application of learning program for identifying oil-bearing layers, Geol. Geofiz., 2, no. 6, p. 15-29 (in Russian).
3. Dubois, J., A. Gvishiani (1998) , Dynamic Systems and Dynamic Classification Problems in Geophysical Applications, 256 pp., Springer, Paris, https://doi.org/10.1007/978-3-642-49951-7.
4. Dzeboev, B. A., A. D. Gvishiani, et al. (2019) , Strong Earthquake-Prone Areas Recognition Based on an Algorithm with a Single Pure Training Class: I. Altai-Sayan-Baikal Region, M≥6.0, Izvestiya, Physics of the Solid Earth, 55, no. 4, p. 563-575, https://doi.org/10.1134/S1069351319040050.
5. Gelfand, I. M., Sh. A. Guberman, et al. (1972) , Criteria of high seismicity, determined by pattern recognition, Tectonophysics, 13, p. 415-422, https://doi.org/10.1016/B978-0-444-41015-3.50028-8.
6. Gelfand, I. M., Sh. A. Guberman, M. L. Izvekova, et al. , Recognition of the locations of the probable occurrence of strong earthquakes. I. Pamir and Tien-Shan, Vychislitel'naya Seismologiya, no. 6, p. 107-133 (in Russian).
7. Gelfand, I. M., Sh. A. Guberman, et al. (1974) , Recognition of the locations of the probable occurrence of strong earthquakes. III. The case when the boundaries of the disjunctive knots are unknown, Vychislitel'naya Seismologiya, no. 7, p. 41-64 (in Russian).
8. Gelfand, I. M., Sh. A. Guberman, et al. (1976) , Pattern recognition applied to earthquake epicenters in California, Physics of the Earth and Planetary Interiors, 11, no. 3, p. 227-283, https://doi.org/10.1016/0031-9201(76)90067-4.
9. Godzikovskaya, A. A. (1999) , Database "Earthquake catalogue for the Caucasus with M≥4.0 (K≥11.0) from ancient times to the year 2000" (in Russian), WDCB, Moscow (http://zeus.wdcb.ru/wdcb/sep/ caucasus/catrudat.html).
10. GUGK, (1986) , Map of modern vertical movements of the earth's crust in Bulgaria, Hungary, East Germany, Poland, Romania, the USSR (European part). Scale 1:10,000,000, GUGK, Moscow.
11. Gvishiani, A., J. Dubois (2002) , Artificial Intelligence and Dynamic Systems for Geophysical Applications, 350 pp., Springer-Verlag, Paris, https://doi.org/10.1007/978-3-662-04933-4.
12. Gvishiani, A. D., B. A. Dzeboev (2015) , Assessment of seismic hazard in choosing of a radioactive waste disposal location, Mining Journal, no. 10, p. 39-43, https://doi.org/10.17580/gzh.2015.10.07 (in Russian).
13. Gvishiani, A. D., V. A. Gurvich (1992) , Dynamical Problems of Classification and Convex Programming in Applications, 360 pp., Nauka, Moscow (in Russian).
14. Gvishiani, A. D., S. M. Agayan, et al. (2017a) , Recognition of Strong Earthquake-Prone Areas with a Single Learning Class, Doklady Earth Sciences, 474, no. 1, p. 546-551, https://doi.org/10.1134/S1028334X17050038.
15. Gvishiani, A., B. Dzeboev, S. Agayan (2013) , A new approach to recognition of the earthquake-prone areas in the Caucasus, Izvestiya, Physics of the Solid Earth, 49, no. 6, p. 747-766, https://doi.org/10.1134/S1069351313060049.
16. Gvishiani, A. D., B. A. Dzeboev, S. M. Agayan (2016) , FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izvestiya. Physics of the Solid Earth, 52, no. 4, p. 461-491, https://doi.org/10.1134/S1069351316040017.
17. Gvishiani, A. D., B. A. Dzeboev, N. A. Sergeyeva, A. I. Rybkina (2017b) , Formalized Clustering and the Significant Earthquake-Prone Areas in the Crimean Peninsula and Northwest Caucasus, Izvestiya. Physics of the Solid Earth, 53, no. 3, p. 353-365, https://doi.org/10.1134/S106935131703003X.
18. Gvishiani, A. D., A. I. Gorshkov, et al. (1986) , Morphostructures and locations of the earthquakes of Greater Caucasus, Izv. Akad. Nauk SSSR. Fiz. Zemli, no. 9, p. 45-55 (in Russian).
19. Gvishiani, A., A. Gorshkov, V. Kossobokov, et al. (1987a) , Identification of seismically dangerous zones in the Pyrenees, Annales geophysicae series b-terrestrial and planetary physics, 5, no. 6, p. 681-690.
20. Gvishiani, A. D., A. I. Gorshkov, et al. (1987b) , Recognition of the locations of probable occurrence of the strong earthquakes. XV. Morphostructural nodes of the Greater Caucasus, M≥5.5, Vychislitel'naya Seismologiya, no. 20, p. 136-148 (in Russian).
21. Gvishiani, A., A. Gorshkov, et al. (1988) , Recognition of Earthquake-Prone Areas in the Regions of Moderate Seismicity, 176 pp., Nauka, Moscow (in Russian).
22. Khain, V. E., A. F. Limonov (2004) , Regional geotectonics (Tectonics of Continents and Oceans), 270 pp., KERS, Tver (in Russian).
23. Kondorskaya, N. V., N. V. Shebalin, et al. (1982) , New Catalog of Strong Earthquakes in the USSR From Ancient Times Through 1977, 620 pp., US National Oceanic & Atmospheric Administration, Boulder, CO (NOAA-82101304).
24. Kossobokov, V. G., A. A. Soloviev (2018) , Pattern recognition in problems of seismic hazard assessment, Chebyshevskii Sbornik, 19, no. 4, p. 53-88, https://doi.org/10.22405/2226-8383-2018-19-4-55-90.
25. Lilienberg, D. A., N. Sh. Shirinov (1977) , Contemporary tectonic movements, General Description and History of the Relief of the Caucasus, p. 45-59, Nauka, Moscow (in Russian).
26. Milanovsky, E. E. (1968) , Recent Tectonics of the Caucasus, 483 pp., Nedra, Moscow (in Russian).
27. Milanovsky, E. E. (1977) , The latest tectonics, General Description and History of the Relief of the Caucasus, p. 31-45, Nauka, Moscow (in Russian).
28. Milanovsky, E. E. (1996) , Geology of Russia and the Neighboring Countries (Northern Eurasia), 448 pp., Moscow State University, Moscow (in Russian).
29. Milanovsky, E. E., V. E. Khain (1963) , Geological Structure of the Caucasus, Moscow State University, Moscow (in Russian).
30. Nikolov, B. P., J. I. Zharkikh, A. A. Soloviev, R. I. Krasnoperov, S. M. Agayan (2015) , Integration of data mining methods for earth science data analysis in GIS environment, Russian Journal of Earth Sciences, 15, no. 4, p. ES4004, https://doi.org/10.2205/2015ES000559.
31. Prilepin, M. T., et al. (1997) , The kinematic study of the Caucasus region using GPS techniques, Izvestiya. Physics of the Solid Earth, 33, no. 6, p. 68-75.
32. Ranzman, E. Ya. (1979) , Locations of the Earthquakes and Morphostructure of Mountain Regions, Nauka, Moscow (in Russian).
33. Rogozhin, E. A., A. V. Gorbatikov, et al. (2015) , The structural framework and recent geodynamics of the Greater Caucasus Meganticlinorium in the light of new data on its deep structure, Geotectonics, 49, no. 2, p. 123-134, https://doi.org/10.1134/S0016852115020053.
34. Rogozhin, E. A., V. A. Viginsky, N. A. Koronovsky (2000) , Caucasus, Latest tectonics, geodynamics and seismicity of Northern Eurasia, A. F. Grachev (ed.), p. 66-79, Probel, Moscow (in Russian).
35. Shebalin, N. V., R. E. Tatevosian (1997) , Catalogue of large historical earthquakes of the Caucasus, Historical and Prehistorical Earthquakes in the Caucasus (D. Giordini & S. Balassanian, Eds.), NATO ASI Series, 2. Enviroment - Vol. 28, p. 201-232, Kluwer Academic Publishers, Dordrecht.
36. Soloviev, Al. A., A. I. Gorshkov, An. A. Soloviev (2016) , Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas, Izvestiya, Physics of the Solid Earth, 52, no. 6, p. 803-809, https://doi.org/10.1134/S1069351316050141.
37. Soloviev, A. A., A. D. Gvishiani, et al. (2014) , Recognition of earthquake-prone areas: Methodology and analysis of the results, Izvestiya, Physics of the Solid Earth, 50, no. 2, p. 151-168, https://doi.org/10.1134/S1069351314020116.
38. Soloviev, A. A., R. I. Krasnoperov, B. P. Nikolov, J. I. Zharkikh, S. M. Agayan (2018a) , Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods, Izvest., Atmospheric and Ocean Physics, 54, no. 9, p. 1312-1319, https://doi.org/10.1134/S0001433818090360.
39. Soloviev, A. A., O. V. Novikova, et al. (2013) , Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies, Doklady Earth Sciences, 450, no. 2, p. 658-660, https://doi.org/10.1134/S1028334X13060159.
40. Soloviev, An. A., Al. A. Soloviev, A. D. Gvishiani, B. P. Nikolov, Y. I. Nikolova (2018b) , GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions, Izvestiya, Atmospheric and Ocean Physics, 54, no. 9, p. 1363-1373, https://doi.org/10.1134/S0001433818090505.
41. Zakharov, V. S. (2006) , Modern vertical motions of the Earth's crust, Sovremennye Global'nye Izmeneniya Prirodnoi Sredy, p. 626-643, Nauchnyi mir, Moscow (in Russian).