In order to study the peculiarities of the thermohaline structure of the Baltic Sea, we conducted a research based on the Copernicus Marine Environment Monitoring service (https://marine.copernicus.eu/) products and field data collected in 2004-2006. The study of the reanalysed Baltic Sea hydrography allows us to show that it adequately reproduces elements of the thermohaline structure of the cold intermediate layer obtained from the measurement data. Here we examine the hypothesis about the formation of a lower part of the cold intermediate layer in early spring under the influence of a mechanism related to the estuary salinity/density gradient along the main axis of the Baltic Sea. Several numerical experiments were carried out to analyse the back trajectories of Lagrangian particles in the southeastern Baltic Sea. The analysis showed that in the Gdask Basin, at the depth corresponding to the lower part of the cold intermediate layer, there are particles coming from the Bornholm Basin and the S{upsk Channel. This confirms the contribution of the estuary salinity gradient to the formation of the lower part of the cold intermediate layer.
Cold intermediate layer, vertical stratification, basin-scale exchange, thermohaline structure, the Baltic Sea, Lagrangian transport
1. Axell, L. (2013) , BSRA-15: A Baltic Sea Reanalysis 1990-2004, Reports Oceanography, 45, p. 55, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
2. Axell, L., Y. Liu (2016) , Application of 3-D ensemble variational data assimilation to a Baltic Sea reanalysis 1989-2013, Tellus A, 68, p. 24220, https://doi.org/10.3402/tellusa.v68.24220
3. Chubarenko, I., N. Stepanova (2018) , Cold Intermediate Layer of the Baltic Sea: hypothesis of the formation of its core, Progress in Oceanography, 167, p. 1-10, https://doi.org/10.1016/j.pocean.2018.06.012
4. Döös, K., J. Kjellsson, B. Jönsson (2013) , TRACMASS - A Lagrangian trajectory model, Preventive Methods for Coastal Protection, p. 225-249, Springer, New York, https://doi.org/10.1007/978-3-319-00440-2_7
5. Funkquist, L., E. Kleine (2007) , HIROMB: An introduction to HIROMB, an operational baroclinic model for the Baltic Sea, Reports Oceanography, 37, p. 36, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden
6. Janssen, F., C. Schrum, J. O. Backhaus (1999) , A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, Deutsche Hydrogaphishe Zeitschrift, Suppl. 9, 51, p. 5, https://doi.org/10.1007/BF02933676
7. Hydrometeoizdat, (1992) , V. III. The Baltic Sea, 450 pp., Hydrometeoizdat, Leningrad
8. Kapustina, M. V., V. A. Krechik, V. A. Gritsenko (2017) , Seasonal variations in the vertical structure of temperature and salinity fields in the shallow Baltic Sea off the Kaliningrad Region coast, Russ. J. Earth Sci., 17, p. ES1004, https://doi.org/10.2205/2017ES000595
9. Korotaev, G. K., V. V. Knysh, A. I. Kubryakov (2014) , Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971-1993, Izvestiya, Atmospheric and Oceanic Physics, 50, no. 1, p. 35-48, https://doi.org/10.1134/S0001433813060108
10. Krechik, V. A., M. V. Kapustina, et al. (2019) , Variability of hydrological and hydrochemical conditions of Gotland and Gdansk Basins' bottom waters (Baltic Sea) in 2015-2016, Russ. J. Earth Sci., 19, p. ES1002, https://doi.org/10.2205/2018ES000641
11. Lascaratos, A., W. Roether, K. Nittis, et al. (1999) , Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review, Progress in Oceanography, 44, p. 5-36
12. Leppäranta, M., K. Myrberg (2008) , Physical Oceanography of the Baltic Sea, 370 pp., Springer, Praxis Publishing, Chichester, UK
13. Menna, M., P. M. Poulain (2010) , Mediterranean intermediate circulation estimated from Argo data in 2003-2010, Ocean Sci., 6, p. 331-343, https://doi.org/10.5194/os-6-331-2010
14. Oguz, T., S. Besiktepe (1999) , Observations on the Rim Current structure, CIW formation and transport in the western Black Sea, Deep-Sea Research I, 46, p. 1733-1753, https://doi.org/10.1016/S0967-0637(99)00028-X
15. Omstedt, A., L. B. Axell (1998) , Modeling the seasonal, interannual, and long-term variations of salinity and temperature in the Baltic proper, Tellus, 50A, p. 637-652, https://doi.org/10.3402/tellusa.v50i5.14563
16. Ponomarenko, E. P., V. A. Krechik (2018) , Benthic foraminifera distribution in the modern sediments of the Southeastern Baltic Sea with respect to North Sea water inflows, Russ. J. Earth Sci., 18, p. ES6001, https://doi.org/10.2205/2018ES000632
17. Stanev, E. V., M. J. Bowman, et al. (2003) , Control of Black Sea intermediate water mass formation by dynamics and topography: comparisons of numerical simulations, survey and satellite data, J. Mar. Res., 1, p. 59-99, https://doi.org/10.1357/002224003321586417
18. Stanev, E. V., J. V. Staneva (2001) , The sensitivity of the heat exchange at sea surface to meso and sub-basin scale eddies. Model study for the Black Sea, Dyn. Atmos. and Oceans, 33, p. 163-189, https://doi.org/10.1016/S0377-0265(00)00063-4
19. Staneva, J. V., E. V. Stanev (1997) , Cold water mass formation in the Black Sea. Analysis on numerical model simulations, Sensitivity to Change: Black Sea, Baltic Sea and North Sea, E. Ozsoy and A. Mikaelyan (eds.), NATO ASI Series, Vol. 27, p. 375-393, Kluwer Academic Publishers, Dordrecht, Netherlands
20. Stepanova, N. (2017) , Vertical structure and seasonal evolution of the cold intermediate layer in the Baltic Sea, Estuarine, Coastal and Shelf Science, 195, p. 34-40, https://doi.org/10.1016/j.ecss.2017.05.011
21. Stepanova, N. B., I. P. Chubarenko, S. A. Shchuka (2015) , Structure and Evolution of the Cold Intermediate Layer in the Southeastern Part of the Baltic Sea by the Field Measurement Data of 2004-2008, Oceanology, 55, no. 1, p. 25-35, https://doi.org/10.1134/S0001437015010154
22. Thyng, K M., R. D. Hetland (2014) , TracPy: Wrapping the Fortran Lagrangian trajectory model TRACMASS, Proceedings of the 13th Python in Science Conference (SCIPY 2014), p. 79-84, Austin, Texas, https://doi.org/10.25080/Majora-14bd3278-011
23. Tuomi, L., K. Myrberg, A. Lehmann (2012) , The performance of the parameterisations of vertical turbulence in the 3D modelling of hydrodynamics in the Baltic Sea, Cont. Shelf Res., 50-51, p. 64-79, https://doi.org/10.1016/j.csr.2012.08.007
24. Umlauf, L., H. Burchard, K. Hutter (2003) , Extending the k-omega turbulence model towards oceanic applications, Oc. Mod., 5, p. 195-218, https://doi.org/10.1016/S1463-5003(02)00039-2