In 2015, geoacoustic and gas-geochemical studies of bottom sediments of the Vistula Lagoon of the Baltic Sea and the Sevastopol Bay of the Black Sea were carried out. A comparative analysis showed differences in the particle size distribution and methane content in the sediments of the studied basins. Maximum methane concentrations were observed in the sediments of the central part of the Sevastopol Bay (1856 μ" role="presentation" style="position: relative;">μμ\\mumol dm3" role="presentation" style="position: relative;">33^{3}), characterized by the highest content of aleuropelite fraction. The diffusion flux of methane at the water-bottom interface was directed from the sediment to water and varied from 0.004 to 0.132 mmol/(m2" role="presentation" style="position: relative;">22^{2} day) in the Sevastopol Bay, and from 0.005 to 0.030 mmol/(m2" role="presentation" style="position: relative;">22^{2} day) in the Vistula Lagoon. The value of methane solubility in pore waters for the Vistula Lagoon, calculated for the average depth of the basin, is significantly lower compared to the same value for the Sevastopol Bay. Despite this, bubble outgassing was not recorded in the Vistula Lagoon, unlike the Sevastopol Bay.
Methane diffusive flux, methane solubility, grain size, Vistula Lagoon, Sevastopol Bay, Baltic Sea, Black Sea
1. Abegg, F., A. Anderson (1997) , The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic: methane concentrations, saturation and bubble characteristics, Marine Geology, 137, p. 137-147, https://doi.org/10.1016/S0025-3227(96)00084-9.
2. Albert, D. B., C. S. Martens, M. J. Alperin (1998) , Biogeochemical processes controlling methane in gassy coastal sediments - part 2. Groundwater flow control of acoustic turbidity, Continental Shelf Research, 18, p. 1771-1793, https://doi.org/10.1016/S0278-4343(98)00057-0.
3. Alexandrov, S. V. (2010) , Primary Production of Plankton in the Lagoons of the Baltic Sea (Vistula and Curonian lagoons), 228 pp., AtlantNIRO Publishing House, Kaliningrad.
4. Artemov, Yu. G. (2006) , Software support for investigation of natural methane seeps by hydroacoustic method, Marine Ecological Journal, 5, no. 1, p. 57-71.
5. Bondarev, I. P., I. E. Lomakin, V. E. Ivanov (2015) , Features of the Sevastopol Bay formation and development, Geology and Mineral Resources of the World Ocean, 4, no. 42, p. 19-31.
6. Chechko, V. A. (2006) , Modern sedimentation processes in the Vistula Lagoon, the Baltic Sea, Thesis, Shirshov P.P. Institute of Oceanology RAS, Kaliningrad.
7. Dale, A. W., P. Van Cappellen, D. R. Aguilera, et al. (2008) , Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations, Earth and Planetary Science Letters, 265, p. 329-344, https://doi.org/10.1016/j.epsl.2007.09.026.
8. Dunaev, N. N. (2018) , Neotectonic forecast of development of the Vistula spit of the Baltic Sea, Journal of Oceanological Research, 46, p. 67-81, https://doi.org/10.29006/1564-2291.JOR-2018.46(1).6.
9. Egger, M., W. Lenstra, D. Jong, et al. (2016) , Rapid sediment accumulation results in high methane effluxes from coastal sediments, PLoS ONE, 11, p. 1-22, https://doi.org/10.1371/journal.pone.0161609.
10. Egorov, V. N., Yu. G. Artemov, S. B. Gulin (2011) , Methane Seeps in the Black Sea: Environment-Forming and Ecological Role, edited by Polikarpova G. G., 405 pp., InBYUM NAS of Ukraine, Sevastopol (https://repository.marine-research.org/handle/299011/7684).
11. Egorov, V. N., N. V. Pimenov, T. V. Malakhova, et al. (2012) , Biogeochemical characteristics of methane distribution in sediment and water at the gas seepage site of Sevastopol bays, Sea Ecology Journal, 11, no. 3, p. 41-52 (https://elibrary.ru/item.asp?id=23295311).
12. Emelyanov, E. M. (2002) , Geology of the Gdansk Basin, Baltic Sea, 496 pp., Yantarnyi Skaz, Kaliningrad.
13. Frenzel, P., F. Rothfuss, R. Conrad (1992) , Oxygen profiles and methane turnover in a flooded rice microcosm, Biology and Fertility of Soils, 14, p. 84-89, https://doi.org/10.1007/BF00336255.
14. Gubanov, V. I., L. V. Stelmakh, N. P. Klimenko (2002) , Complex assessments of the Sevastopol offshore water quality (the Black Sea), Ekologiya Morya, 62, p. 76-80.
15. Gulin, S. B., L. V. Gulina, I. G. Sidorov, et al. (2014) , 40K in the Black Sea: a proxy to estimate biogenic sedimentation, Journal of Environmental Radioactivity, 134, p. 21-26, https://doi.org/10.1016/j.jenvrad.2014.02.011.
16. Ivanov, M. V., N. V. Pimenov, I. I. Rusanov, et al. (2002) , Microbial processes of the methane cycle at the north-western shelf of the Black Sea, Estuarine, Coastal and Shelf Science, 54, p. 589-599, https://doi.org/10.1006/ecss.2000.0667.
17. Ivanov, V. A., E. I. Ovsyany, L. N. Repetin, et al. (2006) , Hydrological and Hydrochemical Regime of the Sevastopol Bay and its Changes Under the Influence of Climatic and Anthropogenic Factors, 91 pp., MGI NAS of Ukraine, Sevastopol.
18. Ivanov, V. E., I. E. Lomakin, A. S. Topolyuk, et al. (2009) , Peculiarities of tectonics of the southwestern Crimea, Geology and Mineral Resources of World Ocean, no. 4, p. 27-39.
19. Kravchenko, V. G. (2008) , The mechanism of functioning of the underwater gas flares of the Black Sea, Geology and Mineral Resources of World Ocean, no. 1, p. 106-115.
20. Malakhova, T., T. Kanapatskiy, V. Egorov, et al. (2015) , Microbial processes and genesis of methane gas jets in the coastal areas of the Crimea Peninsula, Microbiology, 84, p. 838-845, https://doi.org/10.1134/S0026261715060053.
21. Malakhova, T., T. Kanapatskiy, I. Sidorov, et al. (2018) , Seasonal dynamics of microbial processes in bottom sediments of the Sevastopol coastal area, Oceanology, 58, no. 6, p. 909-917, https://doi.org/10.1134/S0001437018070032.
22. Malakhova, T. V., V. N. Egorov, L. V. Malakhova, N. V. Pimenov (2012) , Elements of methane balance in bottom sediments of the Sevastopol water area, Ecological Safety, 26, no. 1, p. 217-230.
23. Malakhova, T. V., L. V. Malakhova, V. N. Egorov, et al. (2013) , The biogeochemical cycling of methane in the Sevastopol coastal area, Black Sea, Methane in the Environment: Occurrence, Uses and Production, edited by Angelo Basile, p. 61-79, Nova Science Publishers, Rende, Italy.
24. Minkovskaya, R. Ya., A. I. Ryabinin, A. N. Demidov (2007) , The results of state monitoring of the main elements of the biogenic cycle in the water of the Sevastopol Bay, Ecological Safety of Coastal and Shelf Zones in the Integrated Use of Shelf Resources, no. 15, p. 66-73.
25. Moiseenko, O. G., N. A. Orekhova (2011) , Study of the mechanism of long-term evolution of the carbon cycle in the ecosystem of the Sevastopol Bay, Marine Hydrophysical Journal, no. 2, p. 72-84.
26. Otmas, A. A. (senior), A. N. Kokhanova (2015) , The structure of the basement of Kaliningrad Region and the evaluation petroleum potential prospects, Petroleum Geology - Theoretical and Applied Studies, 10, no. 1, p. 1-20, https://doi.org/10.17353/2070-5379/12_2015.
27. Otmas, A. A. Sr., L. S. Margulis, A. A. Otmas (2017) , Petroleum potential prospects of the Baltic Sea shelf, Petroleum Geology - Theoretical and Applied Studies, 12, no. 1, p. 1-20, https://doi.org/10.17353/2070-5379/4_2017.
28. Otmas, A. A., V. M. Desyatkov, V. K. Chegesov (2006) , Tectonic zoning of the Kaliningrad region and the adjacent shelf, Geology, Geophysics and the Development of Oil and Gas Fields, 8, p. 13-24.
29. Pimenov, N. V., T. A. Kanapatskii, P. A. Sigalevich, et al. (2013a) , Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol Bay, Microbiology, 82, no. 5, p. 618-627, https://doi.org/10.1134/S0026261713050093.
30. Pimenov, N. V., M. O. Ulyanova, T. A. Kanapatskii, et al. (2013b) , Sulfate reduction, methanogenesis, and methane oxidation in the upper sediments of the Vistula and Curonian Lagoons, Baltic Sea, Microbiology, 82, p. 224-233, https://doi.org/10.1134/S0026261713020136.
31. Pustelnikovas, O. (1998) , The Geochemistry of Sediments of the Curonian Lagoon (Baltic Sea), 236 pp., Institute of Geography, Vilnius.
32. Reindl, A. R., J. Bolalek (2017) , Biological factor controlling methane production in surface sediment in the Polish part of the Vistula Lagoon, Oceanological and Hydrobiological Studies, 46, no. 2, p. 223-230, https://doi.org/10.1515/ohs-2017-0022.
33. Sakagami, H., N. Takahashi, A. Hachikubo, et al. (2012) , Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method, Geo-Marine Letters, 32, no. 5-6, p. 465-472, https://doi.org/10.1007/s00367-012-0294-y.
34. Slabaugh, W. H., T. D. Parsons (1976) , Solutions, General Chemistry, third edition, p. 203-226, John Wiley, Hoboken.
35. Stokozov, N. A. (2010) , Morphometric characteristics of the Sevastopol and Balaklava bays, Environmental Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources, 23, p. 198-208.
36. Thang, N. M., V. Bruchert, M. Formolo, et al. (2013) , The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in littoral Baltic Sea sediments (Himmerfj\\"arden, Sweden), Estuaries and Coasts, 36, p. 98-115, https://doi.org/10.1007/s12237-012-9557-0.
37. Ulyanova, M., V. Sivkov, T. Kanapatskij, et al. (2013) , Seasonal variations in methane concentrations and diffusive fluxes in the Curonian and Vistula lagoons, Baltic Sea, Geo-Marine Letters, 34, no. 2-3, p. 231-240, https://doi.org/10.1007/s00367-013-0352-0.
38. Vershinin, A. V., A. G. Rozanov (2002) , Chemical Exchange at the Water-Bottom Boundary in the Oceans and Seas, 164 pp., GEOS, Moscow.
39. Wulff, F., A. Stigebrandt, L. Rahm (1990) , Nutrient dynamics of the Baltic Sea, Ambio, 19, no. 3, p. 126-133 (http://www.jstor.org/stable/4313678).
40. Yamamoto, S., J. Alcauskas, Th. Crozier (1976) , Solubility of methane in distilled water and seawater, Journal of Chemical and Engineering Data, 21, p. 78-80, https://doi.org/10.1021/je60068a029.