Russian Federation
Russian Federation
Russian Federation
The three-dimensional geomechanical model of Southern California was developed including a mountain relief, fault tectonics and internal border characteristics such as the roof of the consolidated crust and Moho surface. During the last six years on the basis of the developed geomechanical model and current seismicity is realized an approbation of technology for the estimation of possible future seismicity on a two weeks interval. All four strongest events with $M \sim 5.5-7.2$ occurred in South California during the analyzed period were prefaced by the stress anomalies in peculiar advance time of weeks-months. Inside the stress state background level investigation it was identified the feature of the large-scale interaction between two seismically active tectonic provinces of Southern California.
Geomechanical model, stress-strain state, earthquakes
1. Ben-Zion, Y. Dynamic rupture in recent models of earthquake faults, // J. Mech. Phys. Solids, 2001. - v. 49 - p. 2209.
2. Ben-Zion, Y., Rice, J. R. Slip patterns and earthquake populations along different classes of faults in elastic solids, // J. Geophys. Res., 1995. - v. 100 - p. 12959.
3. Bondur, V., Kuznetsova, L. Satellite monitoring of seismic hazard area geodynamics using the method of lineament analysis // Proc. 31st Int. Symp. on Remote Sensing of Environment - St. Petersburg: ISRSE., 2005. - p. 376.
4. Bondur, V. G., Pulinets, S. A. Effect of mesoscale atmospheric vortex processes on the upper atmosphere and ionosphere of the Earth, // Izvestiya, Atmospheric and Oceanic Physics, 2012. - v. 48 - no. 9 - p. 871.
5. Bondur, V. G., Smirnov, V. M. Method of seismic danger area monitoring according to ionosphere variations, registered by satellite variation systems, // Doklady Akademii Nauk, 2005. - v. 402 - no. 5 - p. 675.
6. Bondur, V. G., Zverev, A. T. A method of earthquake forecast based on the lineament analysis of satellite images, // Doklady Earth Sciences, 2005a. - v. 402 - no. 4 - p. 561.
7. Bondur, V. G., Zverev, A. T. A method of earthquake forecast based on the lineament dynamics analysis using satellite imagery, // Issledovanie Zemli iz Kosmosa, 2005b. - no. 3 - p. 37.
8. Bondur, V. G., Zverev, A. T. Lineament system formation mechanisms registered in space images during the monitoring of seismic danger areas, // Issledovanie Zemli iz Kosmosa, 2007. - no. 1 - p. 47.
9. Bondur, V. G., Garagash, I. A. , Gokhberg, M. B. Large scale interaction of seismically active tectonic provinces: the example of Southern California, // Dokl. Earth Sc., 2016a. - v. 466 - p. 183.
10. Bondur, V. G., Garagash, I. A., Gokhberg, M. B., Lapshin, V. M., Nechaev, Yu. V. Connection between variations of the stress-strain state of the Earth's crust and seismic activity: the example of Southern California, // Dokl. Earth Sc., 2010. - v. 430 - p. 147.
11. Bondur, V. G., Garagash, I. A., Gokhberg, M. B., Lapshin, V. M., Nechaev, Yu. V., Steblov, G. M., Shalimov, S. L. Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, // Dokl. Earth Sc., 2007. - v. 414 - no. 4 - p. 666.
12. Bondur, V. G., Garagash, I. A., Gokhberg, M. B., Rodkin, M. V. The Evolution of the Stress State in Southern California Based on the Geomechanical Model and Current Seismicity, // Izv., Phys. Solid Earth, 2016b. - v. 52 - no. 1 - p. 117.
13. Bondur, V., Garagash, I., Gokhberg, M., Steblov, G. Monitoring of the stress state variations of the Southern California for the purpose of earthquake prediction // Proc. Fall Meeting of American Geophysical Union, San Francisco, Dec. 15-19, 2014 - Washington: AGU., 2014. - p. 117.
14. Bondur, V. G., Zverev, A. T., Gaponova, E. V. Geodynamic features of seismic areas of Russia, based on lineament analysis, // Current Problems in Remote Sensing of the Earth From Space, 2012. - v. 9 - no. 4 - p. 213.
15. Gokhberg, M. B., Morgounov, V. A., Yoshino, T., Tomizawa, I. Experimental measurements of electromagnetic emissions possibly related to earthquakes in Japan, // J. Geophys. Res., 1982. - v. 87 - no. B9 - p. 7824.
16. Gokhberg, M. B., Morgounov, V. A., Pokhotelov, O. A. Earthquake Prediction: Seismo-electromagnetic phenomena - Australia, United Kingdom: Gordon and Breach Publishers., 1995. - 191 pp.
17. Jordan, T. H. Earthquake predictability, brick by brick, // Seismological Research Letters, 2006. - v. 77 - no. 1 - p. 3.
18. Kasahara, K. Earthquakes Mechanics - Cambridge, England: Cambridge Univ. Press., 1985.
19. Keilis-Borok, V., Shebalin, P., Gabrielov, A., Turcotte, D. Reverse tracing of short-term earthquake precursors, // Physics of the Earth and Planetary Interiors, 2004. - v. 145 - p. 75.
20. Keilis-Borok, V. I., Soloviev, A. A. Variations of trends of indicators describing complex systems: Change of scaling precursory to extreme events, // Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010. - v. 20 - no. 3
21. Lobatskaya, R. M. Structure Zoning of Crust Fractures - Moscow: Nedra., 1987.
22. Molchan, G., Keilis-Borok, V. Earthquake prediction: Probabilistic aspect, // Geophys. J. Int., 2008. - v. 173 - p. 1012.
23. Rice, J. Constitutive relations for fault slip and earthquake instabilities, // Pure Appl. Geophys., 1983. - v. 121 - no. 2 - p. 187.
24. Riznichenko, Yu. V. Problems of Seismology. Selected Works - Moscow: Nauka., 1985.
25. Sobolev, G. A. Fundamental of Earthquake Prediction - Moscow: Nauka., 1993. - 313 pp.
26. Varostos, P., Alexopoulos, K., Nomicos, K. Seismic electric currents, // Proceedings of the Academy of Athens, 1981. - no. 56 - p. 277.