IMPLICATIONS OF ELECTROKINETIC PROCESSES FOR THE INTENSITY OF GEOACOUSTIC EMISSION IN THE TIME VICINITY OF A TECTONIC EARTHQUAKE: A THEORETICAL STUDY
Abstract and keywords
Abstract (English):
We present the results of the work which continues our previous studies of the geoacoustic emission (GAE) responses to the weak impacts from the varying electromagnetic fields. In this paper, we analyze the probable influence exerted on the amplitude of GAE responses by the electrokinetic processes associated with the activation of filtration flows during the preparation of a tectonic earthquake of moderate magnitude. Based on the consolidation model of an earthquake source developed by I.~P.~Dobrovolsky, we suggest the model describing the generation of electrokinetic currents in response to the change in the volumetric strain in the source area of the future earthquake. Our model takes into account the physico-mechanical properties of the medium in the region of the measurement borehole and the physical properties and chemical composition of water in the measurement borehole itself. Using this model, we carry out the numerical experiments on simulating the evolution of the specific density of electrokinetic current in the time vicinity of a considered seismic event. The calculated variations in the specific density of electrokinetic current qualitatively coincide with the variations in the amplitude envelope of GAE responses.

Keywords:
Geoacoustic emission, electrokinetic processes, electrical double layers, electromagnetic radiation, preparation of a tectonic earthquake, borehole
Text
Text (PDF): Read Download
References

1. Chelidze, T. L. Methods of Streaming Theory in Geomaterials Mechanics - Moscow: Nauka., 1987. - 136 pp.

2. Dobrovolsky, I. P. The Mechanics of Tectonic Earthquake Preparation - Moscow: IFZ AN SSSR., 1984. - 189 pp.

3. Dobrovolsky, I. P. Mathematical Theory of Preparation and Forecast of Tectonic Earthquakes - Moscow: Fizmatlit., 2009. - 240 pp.

4. Dobrovolsky, I. P. Perturbations of ground fluid flow at the preparation of tectonic earthquake, // Geophys. Res., 2011. - v. 12 - no. 2 - p. 33.

5. Dobrynin, V. M., Vendelshteyn, B. Yu., Kozhevnikov, D. A. Petrophysics: Textbook for Universities - Moscow: Oil and Gas., 2004. - 368 pp.

6. Dukhin, S. S. Electroconductivity and Electrokinetic Properties of Dispersive Systems - Kiev: Naukova Dumka., 1975. - 346 pp.

7. Eshelbi, J. Continual Theory of Dislocations - Moscow: Inost. Lit.., 1963. - 248 pp.

8. Fitterman, D. V. Calculations of the self-potential anomalies near vertical contacts, // J. Geophys. Res., 1979a. - v. 44 - no. 2 - p. 195.

9. Fitterman, D. V. Theory of electrokinetic-magnetic anomalies in a faulted half-space, // J. Geophys. Res., 1979b. - v. 84 - no. B11 - p. 6031.

10. Fridrikhsberg, D. A. The Course of Colloidal Chemistry - Leningrad: Khimiya., 1974. - 352 pp.

11. Gavrilov, V. A. Physical causes of diurnal variations in the geoacoustic emission level, // Doklady Earth Science, 2007. - v. 414 - no. 1 - p. 638.; DOI: https://doi.org/10.1134/S1028334X07040320; EDN: https://elibrary.ru/MWQWBV

12. Gavrilov, V. A. About method of continuous monitoring of rocks electrical resistivity, // Journal of Seismic Instruments, 2013. - v. 49 - no. 3 - p. 25.

13. Gavrilov, V. A., Vlasov, Yu. A. The effect of modulation of geoacoustic emission level by super-low frequency electromagnetic radiation from measurements on different boreholes of Petropavlovsk-Kamchatsky geodynamic polygon // Problems of complex geophysical monitoring the Russian Far East, Materials of III scientific and technological conference, 09-15 October 2011 - Petropavlovsk-Kamchatsky: RAS., 2011. - p. 207.

14. Gavrilov, V. A., Morozova, Yu. V., Storcheus, A. V. Geoacoustic emission level variations in deep borehole G-1 (Kamchatka) and their relation to seismic activity, // J. Volcanology and Seismology, 2006. - v. 1 - p. 52.

15. Gavrilov, V., Bogomolov, L., Morozova, Yu. V., Storcheus, A. Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity, // Ann. Geophys., 2008. - v. 51 - no. 5/6 - p. 737.

16. Gavrilov, V. A., Bogomolov, L., Zakupin, A. S. Comparison of the geoacoustic measurements in boreholes with the data of laboratory and in-situ experiments on electromagnetic excitation of rocks, // Izvestiya, Phys. Solid Earth, 2011. - v. 47 - no. 11 - p. 1009.

17. Gavrilov, V. A., et al. Modulating impact of electromagnetic radiation on geoacoustic emission of rocks, // Russ. J. Earth Sci., 2013. - v. 13 - p. 1009.; DOI: https://doi.org/10.2205/2013ES000527; EDN: https://elibrary.ru/SCXERP

18. Gavrilov, V. A., Panteleev, I. A., Ryabinin, G. V. The physical basis of the effects caused by electromagnetic forcing in the intensity of geoacoustic processes, // Izvestiya, Phys. Solid Earth, 2014. - v. 50 - no. 1 - p. 87.

19. Glover, P. W. J., Walker, E., Jackson, M. D. Streaming-potential coefficient of reservoir rock: A theoretical mode l, // Geophysics, 2012. - v. 77 - no. 2 - p. D17.; DOI: https://doi.org/10.1190/geo2011-0364.1; EDN: https://elibrary.ru/PKZXWJ

20. Ishido, T., Mizutani, H. Relationship between fracture strength of rocks and $\zeta$-potential, // Tectonophysics, 1980. - v. 67 - p. 13.

21. Ishido, T., Nishizawa, O. Effects of zeta potential on microcrack growth in rock under relatively low uniaxial compression, // J. Geophys. Res., 1984. - v. 89 - no. B6 - p. 4153.

22. Khatkevich, Yu. M., Ryabinin, G. V. Hydrogeochemical studies in Kamchatka in connection with the search for earthquake precursors, // J. Volcanol. Seism., 2006. - v. 4 - p. 34.; EDN: https://elibrary.ru/HVKXCL

23. Makarov, P. V. Mathematical theory of evolution of loaded solids and media, // Physical Mesomechanics, 2008. - v. 11 - no. 5-6 - p. 213.; DOI: https://doi.org/10.1016/j.physme.2008.11.002; EDN: https://elibrary.ru/LLIBSZ

24. Mizutani, H., Ishido, T. A new interpretation of magnetic field variation associated with the Matsushiro earthquakes, // J. Geomagn. Geoelectr., 1976. - v. 28 - p. 179.

25. Mizutani, H., Ishido, T. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics, // J. Geophys. Res., 1981. - v. 86 - no. B3 - p. 1763.

26. Myachkin, V. I. Processes of Earthquake Preparation - Moscow: Nauka., 1978. - 232 pp.

27. Panteleev, I. A., Naimark, O. B. Current trends in the mechanics of tectonic earthquakes, // Vestnik Permskogo Nauchnogo Tsentra UB RAS, 2014. - no. 3 - p. 44.; EDN: https://elibrary.ru/TDURFP

28. Panteleev, I. A., Plekhov, O. A., Naimark, O. B. Nonlinear Dynamics of the Blow-Up Structures in the Ensembles of Defects as a Mechanism of Formation of Earthquake Sources, // Izvestiya, Phys. Solid Earth, 2012. - v. 48 - no. 6 - p. 504.

29. Panteleev, I. A., Plekhov, O. A., Naimark, O. B. Model of geomedia containing defects: Collective effects of defects evolution during formation of potential earthquake foci, // Geodynamics [ampersand] Tectonophysics, 2013. - v. 1 - p. 37.; DOI: https://doi.org/10.5800/GT-2013-4-1-0090; EDN: https://elibrary.ru/RJPGYE

30. Rastogi, R. P., Srivastava, R. C. Nonequilibrium Thermodynamics of Electrokinetic Phenomena, // Chem. Rev., 1993. - v. 93 - no. 6 - p. 1945.

31. Revil, A., Glover, P. W. J. Theory of ionic surface electrical conduction in porous media, // Physical Review B: Condensed Matter and Materials Physics, 1997. - v. 55 - p. 1757.

32. Revil, A., Pezard, P. A., Glover, P. W. J. Streaming potential in porous media 1. Theory of the zeta potential, // J. Geophys. Res., 1999. - v. 104 - no. B9 - p. 20,021.

33. Riznichenko, Yu. V. Sizes of Crustal Earthquake Focus and Seismic Moment, Investigation for Physics of Earthquake Source - Moscow: Nauka., 1976. - 9-26 pp.

34. Rogozhin, E. A., et al. Potential Seismic Foci and Seismological Precursors of Earthquakes - Basis of Real Seismic Forecast - Moscow: Svetoch Plyus., 2011. - 368 pp.

35. Salem, R. R. Theory of Double Layer - Moscow: Fizmatlit., 2003. - 104 pp.

36. Scholz, C. H., Sykes, L. R., Aggarawal, Y. P. Earthquake prediction: A physical basis, // Science, 1973. - v. 181 - p. 803.; DOI: https://doi.org/10.1126/science.181.4102.803; EDN: https://elibrary.ru/XSJZYM

37. Tosha, T., Matsushima, N., Ishido, T. Zeta potential measured for a intact granite sample at temperatures to 200° C, // Geophys. Res. Lett., 2003. - v. 30 - no. 6 - p. 803.

Login or Create
* Forgot password?