The inverse solution of the 1D Parker dynamo equations is considered. The method is based on minimization of the cost-function, which characterize deviation of the model solution properties from the desired ones. The output is the latitude distribution of the magnetic field generation sources: the $\alpha$- and $\omega$-effects. Minimization is made using the Monte-Carlo method. The details of the method, as well as some applications, which can be interesting for the broad dynamo community, are considered: conditions when the invisible for the observer at the surface of the planet toroidal part of the magnetic field is much larger than the poloidal counterpart. It is shown that at some particular distributions of $\alpha$ and $\omega$ the well-known thesis that sign of the dynamo-number defines equatorial symmetry of the magnetic field to the equator plane, is violated. It is also demonstrated in what circumstances magnetic field in the both hemispheres have different properties, and simple physical explanation of this phenomenon is proposed.
mean-field dynamo, magnetic field, $\alpha$-, $\omega$-effects, reversals
1. Amit, H., Christensen, U. R., Langlais, B. The influence of degree-1 mantle heterogeneity on the past dynamo of Mars, // Phys. Earth Planet. Int., 2011. - v. 189 - p. 63.
2. Belvedere, G., Kuzanyan, K., Sokoloff, D. D. A two-dimensional asymptotic solution for a dynamo wave in the light of the solar internal rotation, // Mon. Not. R. Astron. Soc., 2000. - v. 315 - p. 778.
3. Brandenburg, A., Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory, // Phys. Rep., 2005. - v. 417 - p. 1.
4. Busse, F. H., Simitev, R. D. Parameter dependences of convection-driven dynamos in rotating spherical fluid shells, // Geophys. Astrophys. Fluid Dynam., 2006. - v. 100 - p. 341.
5. Dietrich, W., Wicht, J. A hemispherical dynamo model: Implications for the Martian crustal magnetization, 2013. - p. 10.
6. Grote, E., Busse, F. H. Hemispherical dynamos generated by convection in rotating spherical shells, // Phys. Rev. E, 2000. - v. 62 - p. 4457.
7. Gubbins, D., Barber, C. N., Gibbons, S., Love, J. J. Kinematic dynamo action in a sphere. II Symmetry selection, // Proc. R. Soc. Lond. A, 2000. - v. 456 - p. 1669.
8. Knaack, R., Stenflo, J. O., Berdyugina, S. V. Periodic oscillations in the north-south asymmetry of the solar magnetic field, // Astron. Astrophys., 2004. - v. 418 - p. L17.
9. Kleeorin, N., Rogachevskii, I., Ruzmaikin, A. Magnitude of dynamo-generated magnetic field in solar-type convective zones, // Astronomy and Astrophysics, 1995. - v. 297 - p. 159.
10. Krause, F., Rädler, K. H. Mean-field magnetohydrodynamics and dynamo theory - Berlin: Akademie-Verlag., 1980. - 271 pp.
11. Landeau, M., Aubert, J. Equatorially asymmetric convection inducing a hemispherical magnetic field in rotating spheres and implications for the past martian dynamo, // Phys. Earth. Planet. Int., 2011. - v. 185 - p. 61.
12. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes. The Art of Scientific Computing. (C++ code), Third Edition - Cambridge, England: Cambridge University Press., 2007. - 1235 pp.
13. Reshetnyak, M. Taylor cylinder and convection in a spherical shell, // Geomagnetism and Aeronomy, 2010. - v. 50 - no. 2 - p. 263.
14. Reshetnyak, M. The mean-field dynamo model in geodynamo, // Russ. J. Earth Sci., 2014. - v. 14 - p. 263.
15. Ribes, J. C., Nesme-Ribes, E. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715, // Astron. Astrophys., 1993. - v. 276 - p. 549.
16. Roberts, E. M., King, P. H. On the genesis of the Earth's magnetism, // Rep. Prog. Phys, 2013. - v. 76 - p. 096801-1.
17. Ruzmaikin, A. A., Shukurov, A. M., Sokoloff, D. D. Magnetic Fields of Galaxies - Dordrecht: Kluwer Academic Publishers., 1988. - 313 pp.
18. Rüdiger, G., Kitchatinov, L. L., Hollerbach, R. Magnetic processes in astrophysics. Theory, simulations, experiments - Verlag GmbH: Wiley-VCHr., 2013.
19. Stanley, S., Elkins-Tanton, L., Zuber, M. T., Parmentier, E. M. Mars' paleomagnetic field as the result of a single-hemisphere dynamo, // Science, 2008. - v. 321 - p. 1822.