GEODYNAMICS OF THE LOMONOSOV RIDGE IN THE CENTRAL ARCTIC
Abstract and keywords
Abstract (English):
The deep-water basin on the Lomonosov Ridge in Central Arctic was rapidly formed on a shallow water shelf in the early Miocene. The continuity of the main seismic reflectors in the sedimentary cover of the ridge indicates no significant crustal stretching during the subsidence. The absence of large free-air gravity anomalies above the ridge precludes the dynamic topography in the mantle from being a cause of the formation of the basin. In the Miocene, the ridge was very far from the convergent boundaries therefore lithospheric flexing is unlikely to produce the subsidence. Under these conditions, crustal subsidence on the ridge was most probably associated with the increase in the crustal density due to metamorphic reactions catalyzed by fluid infiltration from the mantle.

Keywords:
Arctic region, Cenozoic, gravity and isostasy, lithospheric flexure, continental crust, lithosphere, role of fluids
Text
Publication text (PDF): Read Download
References

1. Allen, P. A., Allen, J. R. Basin Analysis: Principles and Application to Petroleum Play Asessment, 3rd Edition - Oxford: Wiley-Blackwell., 2013. - 619 pp.

2. Artemjev, M. E., Artyushkov, E. V. On the origin of rift valleys, // Proceedings of the Russian Academy of Sciences, Ser. Geology, 1968. - no. 4 - p. 58.

3. Artemjev, M. E., Artyushkov, E. V. Structure and isostasy of the Baikal rift and the mechanism of rifting, // J. Geophys. Res., 1971. - v. 76 - no. 5 - p. 1197.

4. Artemieva, I. M., Thybo, H. Moho depth and crustal structure in Europe, Greenland, and the North Atlantic region, // Geophysical Research Abstracts, 2013. - v. 15 - p. 1197.

5. Artyushkov, E. V. Physical Tectonics - Moscow: Nauka., 1993. - 456 pp.

6. Artyushkov, E. V., Belyaev, I. V., Kazanin, G. S., Pavlov, S. P., Chekhovich, P. A., Shkarubo, S. I. Formation mechanisms of ultradeep sedimentary basins: the North Barents basin. Petroleum potential implications, // Russ. Geol. Geophys., 2014. - v. 55 - p. 649.

7. Austrheim, H. Eclogitization of lower crustal granulites by fluid migration through shear zones, // Earth Planet. Sci. Lett., 1987. - v. 81 - p. 221.

8. Backman, J., et al. Sites V0001-M0004, // Proceedings of the Integrated Ocean Drilling Program, 2006. - v. 302 - p. 221.

9. Backman, J., Jakobsson, M., Frank, V., et al. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, // Paleoceanography, 2008. - v. 23 - p. 221.

10. D\ossing, A., Gaina, C., Brozena, J. M. Building and breaking a large igneous province: An example from the High Arctic, // Geophys. Res. Lett., 2017. - v. 44

11. Flament, N., Gurnis, M., M#xFC;ller, R. D. A review of observations and models of dynamic topography, // Lithosphere, 2013. - v. 5 - no. 2 - p. 189.

12. Gac, S., Huismans, R. S. , Podladchikov, Yu. Yu. , Faleide, J. Y. On the origin of the ultradeep East Barents Sea basin, // J. Geophys. Res., 2012. - v. 117 - p. 189.

13. Grantz, A., Hart, P., Childers, V. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean // Arctic Petroleum Geology. Geological Society London Memoirs, Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V., S\orensen, K. eds., vol. 35 - London: Geological Society., 2011. - p. 771.

14. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean, // Nature, 2007. - v. 447 - p. 986.

15. Jamtveit, B., Austrheim, H. Metamorphism: The Role of Fluids, // Elements, 2010. - v. 6 - p. 153.

16. Jokat, W. The sedimentary structure of the Lomonosov Ridge between 88#xB0; N and 80#xB0; N, // Geophysical Journal International, 2005. - v. 163 - p. 698.

17. Kashubin, S. N., Pavlenkova, N. I., Petrov, O. V., Milstein, Ye. D., Shokalsky, S. P., Erinchek, M. Types of the Earth's crust of the Circumpolar Arctic, // Regional geology and metallogeny, 2013. - v. 55 - p. 5.

18. Lawver, L. A., Grantz, A., Gahagan, L. M. Plate kinematic evolution of the present Arctic region since the Ordovician, // Spec. Pap. Geol. Soc. Am., 2002. - v. 360 - p. 333.

19. Lithgow-Bertelloni, C., Silver, P. G. Dynamic topography, plate driving forces and the African superswell, // Nature, 1998. - v. 395 - p. 269.

20. McKenzie, D. Some remarks on the development of sedimentary basins, // Earth and Planet. Sci. Lett., 1978. - v. 40 - p. 25.

21. Moran, K., Backman, J., Brinkhuis, Y., et al. The Cenozoic paleoenvironment of the Arctic Ocean, // Nature, 2006. - v. 444 - p. 601.

22. Olson, P., Amit, H. Mantle superplumes induce geomagnetic superchrons, // Front. Earth Sci., 2015. - v. 3 - p. 601.

23. Pinet, B., Montadert, L., Mascle, A., et al. New insights on the structure and formation of sedimentary basins from deep seismic profiling in Western Europe // Petroleum Geol. of North West Europe - London: Graham and Trotman., 1987. - p. 11.

24. Piskarev, A. L., Poselov, V. A., Avetisov, G. P., et al. Arctic Basin Geology and Morphology, V. D. Kaminsky ed. - SPb: VNIIOkeanGeologiya., 2016. - 291 pp.

25. Poselov, V. F., Butsenko, V. V., Chernykh, A. A., Glebovsky, Y. Y., et al. The structural integrity of the Lomonosov Ridge with the North American and Siberian continental margins - SPb: VSEGEI., 2014. - 332 pp.

26. Rekant, P. V., Gusev, E. A., Vinogradov, V. A. Horst-graben structures of the Lomonosov Ridge sedimentary cover: history of formation and linkages with the Siberian shelf // Geophysical Institute Report UAG-R - Fairbanks, Alaska: University of Alaska., 2012. - p. 165.

27. Watts, A. B. Isostasy and Flexure of the Lithosphere - Cambridge: Cambridge University Press., 2001. - 458 pp.

28. Wernicke, B. Uniform-sense normal simple shear of the continental lithosphere, // Canadian Journal of Earth Sciences, 1985. - v. 22 - no. 1 - p. 108.

29. Ziegler, P. A. North Sea rift system, // Tectonophysics, 1992. - v. 208 - p. 55.

Login or Create
* Forgot password?