AN UNDERGROUND RESEARCH LABORATORY: NEW OPPORTUNITIES IN THE STUDY OF THE STRESS-STRAIN STATE AND DYNAMICS OF ROCK MASS DESTRUCTION
Abstract and keywords
Abstract (English):
According to the existing international requirements, construction of an underground research laboratory that allows to obtain parameters of a host rock mass is a mandatory initial stage when siting a deep geological repository for high-level radioactive waste. The main idea of the basic international and Russian documents regulating the safety of handling high-level radioactive waste is that geological medium is the main barrier to the spread of radionuclides. The results of the world's leading research in this area are directly related to the development of methods, algorithms and software modules for predicting the stability of a structural tectonic block containing waste material of an underground high-level radioactive waste repository. This structural and tectonic block is located in the field of action of time-varying and spatially varying tectonic stress fields as well as the heat field from high-level radioactive waste containers. The results of modeling and implementation of the geodynamic monitoring system based on the use of GPS/GLONASS satellite systems will be used as the basis for the design development of ``Rosatom'' organizations for the construction of URL, which is created in accordance with IAEA requirements to justify the suitability of the Nizhnekansk massif for underground isolation of radioactive waste. Below we consider the influence of the seismotectonic environment, the geodynamic regime of the territory and anthropogenic factors on the possible destruction of the rock in a dynamic form at different hierarchical levels.

Keywords:
stress-strain state, geodynamic observations, geodynamic zoning, GPS/GLONASS, underground research laboratory, high-level radioactive waste
Text
Text (PDF): Read Download
References

1. Anderson, E.~B., Belov, S. V., Kolesnikov, I. Yu., Lobanov, N. F., Morozov, V. N., Tatarinov, V. N. Underground isolation of radioactive wastes - Moscow: Gornaya kniga., 2011. - 592 pp.

2. Van Aswegen, G. Seismic Sources and Rock Burst Damage in South Africa and Chile - Santiago: RaSiM9., 2017.

3. Batugin, A.~S., Batugina, I.~M., Tianwei, L. Tectonophysical model of fault tectonic rock burst with wing sliding, // Journal of LNTU.Natural Science, 2016. - v. 35 - no. 6 - p. 561.

4. Batugin, Andrian Critically Stressed Areas of Earth's Crust as Medium for Man-caused Hazards - Khabarovsk: IDG FEB RAS., 2018.

5. Batugina, I. M., Petukhov, I. M. Geodynamic zoning of mineral deposits for planning and explotation of mines - New Delhi: Oxford ampersand IBH Publishing Co. Pvt. Ltd.., 1990. - 159 pp.

6. Brzovic, A., Skarmeta, J., Skarmeta, J. Sub-horizontal Faulting Mechanism for Large Rock Bursts at the El Teniente Mine - Santiago: RaSiM9., 2017.

7. Dobrovolsky, I.~P. Mathematical Theory of Preparation and Forecast of Tectonic Earthquakes - Moscow: Fizmatlit., 2009. - 240 pp.

8. Jianyong, Qiao, Batugin, A.~S., Batugina, I.~M., Lijiang, Yu, Jingli, Zhao The Conditions of Geodynamic Phenomena at Huafeng Mine in China - Moscow: Sputnik+., 2016. - 144 pp.

9. Kemppainen, K. Case Study: ONKALO Underground Rock Characterization Facility - Albuquerque: IAEA., 2014.

10. Kaiser, P. How highly stressed brittle rock failure impacts tunnel design - Lausanne: International Society for Rock Mechanics and Rock Engineering., 2010. - 27#x2013;38 pp.

11. Kolikov, K. S., Manevich, A. I., Mazina, E. I. Stress-strain analysis in coal massif under traditional mining with full caving and in technology with backfilling, // Eurasian mining, 2018. - no. 2 - p. 15.

12. Kopytov, A.~I., Bashkov, V.~I., Kotenko, E. A. Development of the Podruslovy Site of the Sheregeshevsk Field in the Bump-Hazardous Environment, // Vestnik of Kuzbass State Technical University journal, 2015. - no. 5 - p. 47.

13. Kuzmin, Yu.~O. Recent Geodynamics of Dangerous Faults, // Izvestiya, Physics of the Solid Earth, 2016. - v. 52 - no. 5 - p. 709.

14. Lasocki, S., Orlecka-Sicora, B., Mutke, G., et al. A Catastrophic Event in Rudna Copper-ore Mine in Poland on 29 November, 2016: what, how and why - Santiago: RaSiM9., 2017.

15. Martin, C. D., Chandler, N. A. The potential for vault-induced seismicity in nuclear fuel waste disposal experience from Canada mines - Pinawa Manitoba: Whiteshell Laboratories., 1996. - 20 pp.

16. Melnikov, N. N., Amosov, P. V., Klimin, S. G. Numerical modeling results of cryolithic zone's thermal state while exploiting an underground multi-module small nuclear power plant, // The Arctic: ecology and economy, 2016. - no. 2 - p. 82.

17. Melnikov, N. N., Gusak, S. A., Amosov, P. V., Naumov, V. A., Naumov, A. V., Orlov, A. O., Klimin, S. G., Smirnov, Yu. G. Verification studies on a methodology for constructing underground complexes to dispose small nuclear power plants in the Arctic conditions, // The Arctic: ecology and economy, 2018. - no. 3 - p. 123.

18. Melnikov, N.~N. Ed. Methods and Systems of Seismic Deformation Monitoring of Man-Made Earthquakes and Rock Bursts - Novosibirsk: SB RAS Publishing House., 2010. - 261 pp.

19. Malovichko, D., van Aswegen, G., Clark, R. Mechanisms of large seismic events in platinum mines of the Bushveld Complex South Africa, // J. S. Afr. Inst. Min. Metall., 2012. - v. 112 - no. 6 - p. 419.

20. Morozov, V. N., Biryukov, A. P., Azimov, R. Sh., Tyupin, V. N., Tatarinov, V. N. Dynamic Manifestations of Overburden Pressure at Uranium Mines in the URSS, // Technical Progress in the Nuclear Industry. Series: Mining and Metallurgical Production, 1990. - no. 3 - p. 4.

21. Morozov, V. N., Tatarinov, V. N. Dynamics of Rock Destruction in the Marginal Part of a Rock Mass, // Technical Progress in the Nuclear Industry. Series: Mining and Metallurgical Production, 1991. - no. 1 - p. 11.

22. Morozov, V. N., Gupalo, T. A., Tatarinov, V. N. Predicting Confinement Properties of a Rock Mass when Placing Radioactive Materials in Mine Workings, // Mining Herald, 1999. - no. 6 - p. 99.

23. Morozov, V. N., Tatarinov, V. N. Tectonic processes development with time in the areas of HLW disposal from expert assessment to prognosis, // International Journal of Nuclear Energy Science and Technology IJNEST, 2006. - v. 2 - no. 1/2 - p. 123.

24. Morozov, V. N., Kolesnikov, I. Yu., Belov, S. V., Tatarinov, V. N. Stress-Strain State of the Nizhnekansk Massif #x2013; the Region of Possible Disposal of Radioactive Waste, // Geoecology, 2008a. - no. 3 - p. 232.

25. Morozov, V. N., Belov, S. V., Kolesnikov, I. Yu., Tatarinov, V. N. Opportunities of geodynamic zoning when choosing sites for underground isolation of highly active radioactive waste on the example of the Nizhnekansk massif, // Inzhenernaya Ecology, 2008b. - no. 5 - p. 17.

26. Morozov, V. N., Kolesnikov, I. Yu., Tatarinov, V. N. Simulation of Hazard Levels of a Stress-Strain State in Structural Block of the Nizhnekansk Granitoid Massif To the Selection of Disposal Area for Radioactive Waste, // Geoecology, 2011. - no. 6 - p. 524.

27. Morozov, V. N., Manevich, A. I. Simulation of the Stress-Stain State in the Epicentral Area of the Earthquake on January 26, 2001, M = 6.9 India, // Geophysical Research, 2016. - v. 17 - no. 4 - p. 23.

28. Morozov, V. N., Manevich, A. I. Modeling stress-strain state in the epicentral zone of the earthquake 13.03.19921, M 6.9, Turkey, // Geophysical Research, 2018. - v. 19 - no. 1 - p. 17.

29. Petukhov, I. M., Batugina, I. M. Geodynamic of the Earth Interior - Moscow: Nedra Communications., 1999. - 287 pp.

30. Petukhov, I. M., Linkov, A. M. Mechanics of Rock Bumps and Eruptions - Moscow: Nedra., 1982. - 223 pp.

31. Petukhov, I. M. Rock Bumps in Coal Mines - Saint Petersburg: MNC VNIMI., 2004. - 223 pp.

32. Puchkov, L. A., Kaledina, N. O., Kobylkin, S. S. Natural science-based analysis of risk of recession, // Gornyi Zhurnal, 2015. - no. 5 - p. 4.

33. Rasskazov, I. Y., Saksin, B. G., Petrov, V. A., Prosekin, B. A. Geomechanics and Seismicity of the Antey Deposit Rock Mass, // J Min Sci, 2012. - v. 48 - no. 3 - p. 405.

34. Shebalin, N. V. Strong Earthquakes: Selected Works - Moscow: Publishing House of the Academy of Mining Sciences., 1997. - 541 pp.

35. Tatarinov, V. N. Dynamics of spatial-temporal processes in peri-contour zone - Singapore: CRC Press., 1999.

36. Tatarinov, V. N., Morozov, V. N., Kaftan, V. I., Kagan, A. I. Geodynamic Monitoring as a basis for the Biosphere Protection at the Disposal of Radioactive Waste, // Earth Sciences, 2014. - no. 3 - p. 47.

37. Tatarinov, V. N., Bugaev, E. G., Tatarinova, T. A. Crust deformation assessment by satellite observation data in the context of validation program for safe geological radioactive waste disposal and isolation, // Gornyi Zhurnal, 2015a. - no. 10 - p. 27.

38. Tatarinov, V. N., Morozov, V. N., Kagan, A. I., Pyatygin, V. A. Temperature effect on isolation characteristics of rock mass for nuclear waste disposal, // Earth Sciences, 2015b. - no. 8 - p. 338.

39. Tatarinov, V. N., Seelev, I. N. Study of the Present-Day Geodynamics of the Nizhnekansk Massif for Safe Disposal of Radioactive Wastes, // Atomic Energy, 2017. - v. 121 - no. 3 - p. 203.

40. Tsebakovskaya, N. S., Utkin, S. S., Kapyrin, I. V. Review of International Practice of Spent Fuel and Radioactive Waste Disposal - Moscow: Komtekhprint., 2015. - 208 pp.

41. Zubkov, A. V. Stress State of the Earth's Crust in the Urals, // Lithosphere, 2012. - no. 3 - p. 3.

Login or Create
* Forgot password?