Thermodynamic behavior of Na-majorite and knorringite-majorite garnet systems
Abstract and keywords
Abstract (English):
The behavior of thermal parameters pressure (P) and thermoelastic parameters i.e. Isothermal bulk modulus (K_T), its pressure derivative (K'T) and Thermal expansivity (α) has been analyzed for Na-majorite and knorringite-majorite systems at different compressions down to a maximum value of 0.3 for temperature ranges from 300 K to 1500 K. The pressure dependent compressibility of these garnets have been studied. The comprehensive study of thermodynamic and thermoelastic behavior at different isotherms and isobars respectively has been achieved by employing both Vinet equation of state and Anderson-Isaak equation. The study of thermal expansivity (α) using Anderson-Isaak and Stacy-Davis approach shows a similar trend of MgO system. Based on the validation of Kumar's approach, the lattice parameter of garnet system is computed using Kumar and modified Kumar's approach at high temperature and is found to be very less deviated from the value of lattice parameter at room temperature.

Text
Publication text (PDF): Read Download
References

1. Akaogi, M., A. Navrotsky, T. Yagii, and S.-I. Akimoto, Pyroxene-Garnet Transformation: Thermochemistry and Elasticity of Garnet Solid Solutions, and Application to a Pyrolite Mantle, pp. 251-260, American Geophysical Union (AGU), doihttps://doi.org/10.1029/GM039p0251, 1987.

2. Anderson, D. L., and J. D. Bass, Mineralogy and composition of the upper mantle, Geophysical Research Letters, 11(7), 637-640, doihttps://doi.org/10.1029/GL011i007p00637, 1984.

3. Anderson, O. L., Equations of State of Solids for Geophysics and Ceramic Science, Oxford Monographs on Geology and Geophysics, 1995.

4. Anderson, O. L., and D. G. Isaak, The dependence of the Anderson-Grüneisen parameter δT upon compression at extreme conditions, Journal of Physics and Chemistry of Solids, 54(2), 221-227, doihttps://doi.org/10.1016/0022-3697(93)90313-G, 1993.

5. Anderson, O. L., E. Schreiber, R. C. Liebermann, and N. Soga, Some elastic constant data on minerals relevant to geophysics, Reviews of Geophysics, 6(4), 491-524, doihttps://doi.org/10.1029/RG006i004p00491, 1968.

6. Birch, F., Elasticity and constitution of the earth’s interior, Journal of Geophysical Research (1896-1977), 57(2), 227-286, doihttps://doi.org/10.1029/JZ057i002p00227, 1952.

7. Chopelas, A., and R. Boehler, Thermal expansivity in the lower mantle, Geophysical Research Letters, 19(19), 1983-1986, doihttps://doi.org/10.1029/92GL02144, 1992.

8. Conrad, P. G., C.-S. Zha, H.-K. Mao, and R. J. Hemley, The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite, American Mineralogist, 84(3), 374-383, doihttps://doi.org/10.2138/am-1999-0321, 1999.

9. Dhoble, A., and M. P. Verma, On the Temperature Variation of the Anderson-Grüneisen Parameters of NaCl, physica status solidi (b), 136(2), 497-504, doihttps://doi.org/10.1002/pssb.2221360213, 1986.

10. Dymshits, A., K. Litasov, A. Shatskiy, I. Sharygin, E. Otani, A. Suzuki, N. P. Pokhilenko, and K. Funakoshi, P-V-T equation of state of Na-majorite to 21GPa and 1673K, Physics of the Earth and Planetary Interiors, 227, 68-75, doihttps://doi.org/10.1016/j.pepi.2013.11.005, 2014a.

11. Dymshits, A. M., K. D. Litasov, I. S. Sharygin, A. Shatskiy, E. Ohtani, A. Suzuki, and K. Funakoshi, Thermal equation of state of majoritic knorringite and its significance for continental upper mantle, Journal of Geophysical Research: Solid Earth, 119(11), 8034-8046, doihttps://doi.org/10.1002/2014JB011194, 2014b.

12. Hazen, R. M., R. T. Downs, P. G. Conrad, L. W. Finger, and T. Gasparik, Comparative compressibilities of majorite-type garnets, Physics and Chemistry of Minerals, 21(5), 344-349, doihttps://doi.org/10.1007/BF00202099, 1994.

13. Klemme, S., The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling, Lithos, 77(1), 639-646, doihttps://doi.org/10.1016/j.lithos.2004.03.017, 2004.

14. Kuskov, O., V. Kronrod, and H. Annersten, Inferring upper-mantle temperatures from seismic and geochemical constraints: Implications for kaapvaal craton, Earth and Planetary Science Letters, 244(1), 133-154, doihttps://doi.org/10.1016/j.epsl.2006.02.016, 2006.

15. Milman, V., E. V. Akhmatskaya, R. H. Nobes, B. Winkler, C. J. Pickard, and J. A. White, Systematic ab initio study of the compressibility of silicate garnets, Acta Crystallographica Section B, 57(2), 163-177, doihttps://doi.org/10.1107/S0108768100018188, 2001.

16. Murnaghan, F. D., The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, 30(9), 244-247, doihttps://doi.org/10.1073/pnas.30.9.244, 1944.

17. Ringwood, A. E., and A. Major, High-pressure reconnaissance investigations in the system Mg2SiO4 - MgO - H2O, Earth and Planetary Science Letters, 2(2), 130-133, doihttps://doi.org/10.1016/0012-821X(67)90114-8, 1967.

18. Rydberg, R., Graphische darstellung einiger bandenspektroskopischer ergebnisse, Zeitschrift für Physik, 73(5), 376-385, doihttps://doi.org/10.1007/BF01341146, 1932.

19. Shanker, J., S. S. Kushwah, and M. P. Sharma, On the universality of phenomenological isothermal equations of state for solids, Physica B: Condensed Matter, 271(1), 158-164, doihttps://doi.org/10.1016/S0921-4526(99)00240-9, 1999.

20. Singh, C. P., and R. S. Chauhan, Analysis of thermal expansivity of alkali halide crystals, Indian Journal of

21. Physics, 78, 1215-1219, 2004.

22. Stacey, F. D., and P. M. Davis, High pressure equations of state with applications to the lower mantle and core, Physics of the Earth and Planetary Interiors, 142(3), 137-184, doihttps://doi.org/10.1016/j.pepi.2004.02.003, 2004.

23. Turkin, A. I., and N. V. Sobolev, Pyrope-knorringite garnets: overview of experimental data and natural parageneses, Russian Geology and Geophysics, 50(12), 1169-1182, doihttps://doi.org/10.1016/j.rgg.2009.11.015, 2009.

24. Vinet, P., J. Ferrante, J. R. Smith, and J. H. Rose, A universal equation of state for solids, Journal of Physics C: Solid State Physics, 19(20), L467-L473, doihttps://doi.org/10.1088/0022-3719/19/20/001, 1986.

25. Wijbrans, C. H., A. Rohrbach, and S. Klemme, An experimental investigation of the stability of majoritic garnet in the earth’s mantle and an improved majorite geobarometer, Contributions to Mineralogy and Petrology, 171(5), 50, doihttps://doi.org/10.1007/s00410-016-1255-7, 2016.

26. Zou, Y., and T. Irifune, Phase relations in Mg3Cr2Si3O12and formation of majoritic knorringite garnet at high pressure and high temperature, Journal of Mineralogical and Petrological Sciences, 107(5), 197-205, doihttps://doi.org/10.2465/jmps.120318, 2012.

Login or Create
* Forgot password?