employee
Vladikavkaz, Vladikavkaz, Russian Federation
UDK 532.517 Движение жидкостей с учетом характера течения
UDK 532.545 Движение жидкостей в колонках с наполнением
UDK 551.213 Вулканические извержения центрального типа
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
BISAC SCI SCIENCE
The analytical mathematical model is presented that describes one of the possible mechanisms for the occurrence of long-period seismic events that are often recorded near active volcanic centers. The feeding system of the volcano is modeled in the simplest form of a cylindrical channel filled with a compressible magmatic melt with the rheology of a Maxwell body. It is shown that such a magmatic body can experience harmonic damped oscillations, the damping coefficient of which is determined by the relaxation time of the magmatic melt. These fluctuations may appear as a response to a density perturbation caused by the influx of denser magma from deep layers or a change in pressure in the supply system of the volcano. The dependence of the natural oscillatory frequency on the physical characteristics of the magmatic melt and the geometric dimensions of the feed channel is shown. When the compressibility of the magmatic melt is taken into account, density perturbations depend on the size of the feeding system and are characterized by periodic oscillations, which are most pronounced near the channel axis. Oscillations are also experienced by the flow velocity component directed along the radius of the cylinder. The source mechanism of the long-period seismic events is discussed. The model is used to describe long-period oscillations recorded near Santiaguito (Guatemala).
Volcanic low-frequency earthquakes, volcano feeding system, magmatic melt rheology, compressible magmatic body, analytical model
1. Anfilogov V. N., Bykov V. N., Osipov A. A. Silicate melts. - Moscow : Science, 2005. - P. 357. - (in Russian).
2. Landau L. D., Lifshitz E. M. Theoretical physics: textbook. Hydrodynamics. Vol. 6. - Moscow : Science.Fizmatlit, 1988. - P. 736. - (in Russian).
3. Lebedev E. B., Khitarov N. I. Physical properties of magmatic melts. - Moscow : Science, 1979. - P. 200. - (in Russian).
4. Persikov E. S. Viscosity of magmatic melts. - Moscow : Science, 1984. - P. 159. - (in Russian).
5. Radionov A. A. About small fluctuations of magma in the feeding system of the volcano // News of universities. North Caucasian region. Natural Sciences. - 2020. - 1 (205). - P. 78-84. - DOI:https://doi.org/10.18522/1026-2237-2020-1-78-84. - (in Russian).
6. Tikhonov A. N., Samarsky A. A. Equations of Mathematical Physics. - Moscow : Science, 1966. - P. 724. - (in Russian).
7. Shakirova A. A., Firstov P. P., Parovik R. I. Phenomenological model of generation of ”Drumbeats” seismic regime earthquakes that accompanied the Kizimen volcano eruption in 2011-2012 // Vestnik KRAUNTS. Physical and mathematical sciences. - 2020. - Vol. 33, no. 4. - P. 86-101. - DOI:https://doi.org/10.26117/2079-6641-2020-33-4-86-101. - (in Russian).
8. Angelis S. D., McNutt S. R. Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long-period events // Geophysical Research Letters. - 2005. - Vol. 32, no. 12. - P. 1-4. - DOI:https://doi.org/10.1029/2005gl022618
9. Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Liquids. Vol. 1. - New York : Wiley-Interscience, 1987. - P. 672
10. Chouet B. A. Long-period volcano seismicity: its source and use in eruption forecasting // Nature. - 1996. - Vol. 380, no. 6572. - P. 309- 316. - DOI:https://doi.org/10.1038/380309a0
11. Crosson R. S., Bame D. A. A spherical source model for low frequency volcanic earthquakes // Journal of Geophysical Research. - 1985. - Vol. 90, B12. - P. 10237. - DOI:https://doi.org/10.1029/jb090ib12p10237
12. Dingwell D. B., Webb S. L. Relaxation in silicate melts // European Journal of Mineralogy. - 1990. - Vol. 2, no. 4. - P. 427-449
13. Fujita E., Ida Y., Oikawa J. Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor // Journal of Volcanology and Geothermal Research. - 1995. - Vol. 69, no. 3/4. - P. 365-378. - DOI:https://doi.org/10.1016/0377-0273(95)00027-5
14. Gonnermann H. M., Manga M. The Fluid Mechanics Inside a Volcano // Annual Review of Fluid Mechanics. - 2007. - Vol. 39, no. 1. - P. 321- 356. - DOI:https://doi.org/10.1146/annurev.fluid.39.050905.110207
15. Iverson R. M., Dzurisin D., Gardner C. A., et al. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-2005 // Nature. - 2006. - Vol. 444, no. 7118. - P. 439-443. - DOI:https://doi.org/10.1038/nature05322
16. Johnson J. B., Lees J. M., Gerst A., et al. Longperiod earthquakes and co-eruptive dome inflation seen with particle image velocimetry // Nature. - 2008. - Vol. 456, no. 7220. - P. 377- 381. - DOI:https://doi.org/10.1038/nature07429
17. Johnson J. B., Lyons J. J., Andrews B. J., et al. Explosive dome eruptions modulated by periodic gas-driven inflation // Geophysical Research Letters. - 2014. - Vol. 41, no. 19. - P. 6689-6697. - DOI:https://doi.org/10.1002/2014gl061310
18. Koulakov I., Smirnov S. Z., Gladkov V., et al. Causes of volcanic unrest at Mt. Spurr in 2004-2005 inferred from repeated tomography // Scientific Reports. - 2018. - Vol. 8, no. 1. - DOI:https://doi.org/10.1038/s41598-018-35453-w
19. Koulakov I., West M., Izbekov P. Fluid ascent during the 2004-2005 unrest at Mt. Spurr inferred from seismic tomography // Geophysical Research Letters. - 2013. - Vol. 40, no. 17. - P. 4579-4582. - DOI:https://doi.org/10.1002/grl.50674
20. Kumagai H., Chouet B. A. The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes // Geophysical Journal International. - 1999. - Vol. 138, no. 2. - F7-F12. - DOI:https://doi.org/10.1046/j.1365-246x.1999.00911.x
21. Kumagai H., Chouet B. A. The dependence of acoustic properties of a crack on the resonance mode and geometry // Geophysical Research Letters. - 2001. - Vol. 28, no. 17. - P. 3325-3328. - DOI:https://doi.org/10.1029/2001gl013025
22. Kurzon I., Lyakhovsky V., Lensky N. G., et al. Forcing of seismic waves travelling through a bubbly magma // AGU Fall Meeting Abstracts. Vol. 2005. - New York, 2005. - V53A-1535
23. Kurzon I., Lyakhovsky V., Navon O., et al. Pressure waves in a supersaturated bubbly magma // Geophysical Journal International. - 2011. - Vol. 187, no. 1. - P. 421-438. - DOI:https://doi.org/10.1111/j.1365-246x.2011.05152.x
24. Lamb O. D., Lamur A., Díaz-Moreno A., et al. Disruption of Long-Term Effusive-Explosive Activity at Santiaguito, Guatemala // Frontiers in Earth Science. - 2019. - Vol. 6. - P. 1-14. - DOI:https://doi.org/10.3389/feart.2018.00253
25. Lavallée Y., Dingwell D. B., Johnson J. B., et al. Thermal vesiculation during volcanic eruptions // Nature. - 2015. - Vol. 528, no. 7583. - P. 544- 547. - DOI:https://doi.org/10.1038/nature16153
26. McNutt S. R. Volcanic seismology // Annual Review of Earth and Planetary Sciences. - 2005. - Vol. 33, no. 1. - P. 461-491. - DOI:https://doi.org/10.1146/annurev.earth.33.092203.122459
27. Neuberg J. W., Tuffen H., Collier L., et al. The trigger mechanism of low-frequency earthquakes on Montserrat // Journal of Volcanology and Geothermal Research. - 2006. - Vol. 153, no. 1/2. - P. 37-50. - DOI:https://doi.org/10.1016/j.jvolgeores.2005.08.008
28. Nishimura T., Hamaguchi H., Ueki S. Source mechanisms of volcanic tremor and low-frequency earthquakes associated with the 1988-1989 eruptive activity of Mt Tokachi, Hokkaido, Japan // Geophysical Journal International. - 1995. - Vol. 121, no. 2. - P. 444-458. - DOI:https://doi.org/10.1111/j.1365-246x.1995.tb05725.x
29. Ohmi S., Obara K. Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake // Geophysical Research Letters. - 2002. - Vol. 29, no. 16. - P. 1-4. - DOI:https://doi.org/10.1029/2001gl014469
30. Ozerov A., Ispolatov I., Lees J. Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. - 2003. - Vol. 122, no. 3/4. - P. 265-280. - DOI:https://doi.org/10.1016/s0377-0273(02)00506-1
31. Parovik R. I., Shakirova A. A., Firstov P. P. Mathematical model of the stick-slip effect for describing the “drumbeat” seismic regime during the eruption of the Kizimen volcano in Kamchatka // Proceedings of the II International Conference on Advances in Materials, Systems and Technologies. (CAMSTech-II 2021). Vol. 2467. - AIP Publishing, 2022. - P. 080015. - DOI:https://doi.org/10.1063/5.0092351
32. Scharff L., Hort M., Gerst A. The dynamics of the dome at Santiaguito volcano, Guatemala // Geophysical Journal International. - 2014. - Vol. 197, no. 2. - P. 926-942. - DOI:https://doi.org/10.1093/gji/ggu069
33. Webb S. Silicate melts: Relaxation, rheology, and the glass transition // Reviews of Geophysics. - 1997. - Vol. 35, no. 2. - P. 191-218. - DOI:https://doi.org/10.1029/96rg03263