Inverse-forward method for heat flow estimation: case study for the Arctic region
Abstract and keywords
Abstract (English):
The heat flow data are important in many aspects including interpretation of various geophysical observations, solutions of important engineering problems, modelling of the ice dynamics, and related environmental assessment. However, the distribution of the direct measurements is quite heterogeneous over the Earth. Different methods have been developed during past decades to create continuous maps of the geothermal heat flow (GHF). Most of them are based on the principle of similarity of GHF values for the lithosphere with comparable age and tectonic history or inversion of magnetic field data. Probabilistic approach was also used to realize this principle. In this paper, we present a new method for extrapolating the GHF data, based on the inversion of a geophysical data set using optimization problem solution. We use the results of inversion of seismic and magnetic field data into temperature and data from direct heat flow measurements. We use the Arctic as the test area because it includes the lithosphere of different ages, types, and tectonic settings. In result, the knowledge of GHF is important here for various environmental problems. The resulting GHF map obtained well fits to the observed data and clearly reflects the lithospheric domains with different tectonic history and age. The new GHF map constructed in this paper reveals some significant features that were not identified earlier. In particular, these are the increased GHF zones in the Bering Strait, the Chukchi Sea and the residual GHF anomaly in the area of the Mid-Labrador Ridge. The latter was active during the Paleogene.

Keywords:
geothermal heat flow, Arctic, inversion, optimization, lithosphere
Text
Publication text (PDF): Read Download
References

1. Artemieva, I. M., Global 1°×1° thermal model tc1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 416(1), 245-277, doi:https://doi.org/10.1016/j.tecto.2005.11.022, the Heterogeneous Mantle, 2006.

2. Artemieva, I. M., The continental lithosphere: Reconciling thermal, seismic, and petrologic data, Lithos, 109(1-2), 23-46, doihttps://doi.org/10.1016/j.lithos.2008.09.015, 2009.

3. Artemieva, I. M., Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Science Reviews, 188, 469-481, doihttps://doi.org/10.1016/j.earscirev.2018.10.015, 2019.

4. Beaulieu, S. E., E. T. Baker, C. R. German, and A. Maffei, An authoritative global database for active submarine hydrothermal vent fields, Geochemistry, Geophysics, Geosystems, 14(11), 4892-4905, doihttps://doi.org/10.1002/2013gc004998, 2013.

5. Chapman, D. S., and H. N. Pollack, Regional geotherms and lithospheric thickness, Geology, 5(5), 265-268, doi:10. 1130/0091-7613(1977)5<265:RGALT>2.0.CO;2, 1977.

6. Davies, J. H., Global map of solid Earth surface heat flow, Geochemistry, Geophysics, Geosystems, 14(10), 4608-4622, doi:https://doi.org/10.1002/ggge.20271, 2013.

7. Davies, J. H., and D. R. Davies, Earth’s surface heat flux, Solid Earth, 1(1), 5-24, doihttps://doi.org/10.5194/se-1-5-2010, 2010.

8. Drachev, S. S., Fold belts and sedimentary basins of the Eurasian Arctic, arktos, 2(1), doihttps://doi.org/10.1007/s41063-015-0014-8, 2016.

9. Fuchs, S., B. Norden, and International Heat Flow Commission, The global heat flow database: Release 2021, GFZ Data Services, doihttps://doi.org/10.5880/FIDGEO.2021.014, 2021.

10. Förster, H.-J., A. Förster, R. Oberhänsli, and D. Stromeyer, Lithospheric composition and thermal structure of the Arabian Shield in Jordan, Tectonophysics, 481(1-4), 29-37, doihttps://doi.org/10.1016/j.tecto.2008.11.014, 2010.

11. Gard, M., and D. Hasterok, A global Curie depth model utilising the equivalent source magnetic dipole method, Physics of the Earth and Planetary Interiors, 313, 106,672, doihttps://doi.org/10.1016/j.pepi.2021.106672, 2021.

12. Goutorbe, B., J. Poort, F. Lucazeau, and S. Raillard, Global heat flow trends resolved from multiple geological and geophysical proxies, Geophysical Journal International, 187(3), 1405-1419, doihttps://doi.org/10.1111/j.1365-246x.2011.05228.x, 2011.

13. Hoggard, M. J., K. Czarnota, F. D. Richards, D. L. Huston, A. L. Jaques, and S. Ghelichkhan, Global distribution of sediment-hosted metals controlled by craton edge stability, Nature Geoscience, 13(7), 504-510, doi:https://doi.org/10.1038/s41561-020-0593-2, 2020.

14. Isaev, V. I., G. A. Lobova, A. N. Fomin, V. I. Bulatov, S. G. Kuzmenkov, M. F. Galieva, and D. S. Krutenko, Heat flow and presence of oil and gas (the Yamal peninsula, Tomsk region), Georesursy, 21(3), 125-135, doihttps://doi.org/10.18599/grs.2019.3. 125-135, 2019.

15. Kaban, M. K., Ó. G. Flóvenz, and G. Pálmason, Nature of the crust-mantle transition zone and the thermal state of the upper mantle beneath Iceland from gravity modelling, Geophysical Journal International, 149(2), 281-299, doi:https://doi.org/10.1046/j.1365-246x.2002.01622.x, 2002.

16. Kaban, M. K., P. Schwintzer, I. M. Artemieva, and W. D. Mooney, Density of the continental roots: compositional and thermal contributions, Earth and Planetary Science Letters, 209(1-2), 53-69, doihttps://doi.org/10.1016/s0012-821x(03)00072-4, 2003.

17. Kaban, M. K., R. V. Sidorov, A. A. Soloviev, A. D. Gvishiani, A. G. Petrunin, O. V. Petrov, S. N. Kashubin, E. A. Androsov, and E. D. Milshtein, A New Moho Map for North-Eastern Eurasia Based on the Analysis of Various Geophysical Data, Pure and Applied Geophysics, doihttps://doi.org/10.1007/s00024-021-02925-6, 2022.

18. Kanao, M., V. D. Suvorov, S. Toda, and S. Tsuboi, Seismicity, structure and tectonics in the Arctic region, Geoscience Frontiers, 6(5), 665-677, doihttps://doi.org/10.1016/j.gsf.2014.11.002, 2015.

19. Kashubin, S., N. Pavlenkova, O. Petrov, E. Milshtein, S. Shokalsky, and Y. Erinchek, Crustal types in the Circumpolar Arctic, Regional Geology and Metallogeny, 55, 5-20, 2013.

20. Kharitonov, A. L., Geophysical studies of ring structures for the search for oil and gas deposits, Bulletin of Udmurt University. Series Biology. Earth Sciences, 31(3), 319-328, doihttps://doi.org/10.35634/2412-9518-2021-31-3-319-328, 2021.

21. Khutorskoy, M. D., V. R. Akhmedzyanov, A. V. Ermakov, Y. G. Leonov, L. V. Podgornykh, B. G. Polyak, E. A. Sukhikh, and L. A. Tsibulya, Geothermics of the Arctic seas, 230 pp., GEOS, Moscow, (In Russian), 2013.

22. Langseth, M. G., M. A. Hobart, and K. iti Horai, Heat flow in the Bering Sea, Journal of Geophysical Research: Solid Earth, 85(B7), 3740-3750, doihttps://doi.org/10.1029/jb085ib07p03740, 1980.

23. Li, C.-F., Y. Lu, and J. Wang, A global reference model of Curie-point depths based on EMAG2, Scientific Reports, 7(1), 45,129, doihttps://doi.org/10.1038/srep45129, 2017.

24. Lucazeau, F., Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set, Geochemistry, Geophysics, Geosystems, 20(8), 4001-4024, doihttps://doi.org/10.1029/2019gc008389, 2019.

25. Majorowicz, J., S. E. Grasby, and W. R. Skinner, Estimation of Shallow Geothermal Energy Resource in Canada: Heat Gain and Heat Sink, Natural Resources Research, 18(2), 95-108, doihttps://doi.org/10.1007/s11053-009-9090-4, 2009.

26. Martos, Y. M., M. Catalán, T. A. Jordan, A. Golynsky, D. Golynsky, G. Eagles, and D. G. Vaughan, Heat flux distribution of antarctica unveiled, Geophysical Research Letters, 44(22), 11,417-11,426, doi:https://doi.org/10.1002/ 2017GL075609, 2017.

27. Maule, C. F., M. E. Purucker, N. Olsen, and K. Mosegaard, Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309(5733), 464-467, doihttps://doi.org/10.1126/science.1106888, 2005.

28. Milanovskiy, S. Y., M. K. Kaban, O. M. Rozen, and A. V. Egorkin, Gophysical features of the Anabar shield crust, Bulletin of Kamchatka Regional Association «Educational-Scientific Center»: Earth Sciences, 4, 56-71, (in Russian), 2017.

29. Njeudjang, K., J. D. Kana, A. Tom, J. M. A. Essi, N. Djongyang, and R. Tchinda, Curie point depth and heat flow deduced from spectral analysis of magnetic data over Adamawa volcanic region (Northern Cameroon): geothermal implications, SN Applied Sciences, 2(8), doihttps://doi.org/10.1007/s42452-020-3099-z, 2020.

30. Pasyanos, M. E., T. G. Masters, G. Laske, and Z. Ma, LITHO1.0: An updated crust and lithospheric model of the Earth, Journal of Geophysical Research: Solid Earth, 119(3), 2153-2173, doihttps://doi.org/10.1002/2013jb010626, 2014.

31. Peace, A. L., G. R. Foulger, C. Schiffer, and K. J. McCaffrey, Evolution of labrador sea-baffin bay: Plate or plume processes?, Geoscience Canada, 44(3), 91-102, doihttps://doi.org/10.12789/geocanj.2017.44.120, 2017.

32. Petrov, O., A. Morozov, S. Shokalsky, S. Kashubin, I. M. Artemieva, N. Sobolev, E. Petrov, R. E. Ernst, S. Sergeev, and M. Smelror, Crustal structure and tectonic model of the Arctic region, Earth-Science Reviews, 154, 29-71, doi: https://doi.org/10.1016/j.earscirev.2015.11.013, 2016.

33. Petrunin, A. G., I. Rogozhina, A. P. M. Vaughan, I. T. Kukkonen, M. K. Kaban, I. Koulakov, and M. Thomas, Heat flux variations beneath central greenland’s ice due to anomalously thin lithosphere, Nature Geoscience, 6(9), 746-750, doihttps://doi.org/10.1038/ngeo1898, 2013.

34. Pollack, H. N., S. J. Hurter, and J. R. Johnson, Heat flow from the Earth’s interior: Analysis of the global data set, Reviews of Geophysics, 31(3), 267-280, doihttps://doi.org/10.1029/93RG01249, 1993.

35. Rogozhina, I., A. G. Petrunin, A. P. M. Vaughan, B. Steinberger, J. V. Johnson, M. K. Kaban, R. Calov, F. Rickers, M. Thomas, and I. Koulakov, Melting at the base of the greenland ice sheet explained by iceland hotspot history, Nature Geoscience, 9(5), 366-369, doihttps://doi.org/10.1038/ngeo2689, 2016.

36. Rysgaard, S., J. Bendtsen, J. Mortensen, and M. K. Sejr, High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream, Scientific Reports, 8(1), doihttps://doi.org/10.1038/s41598-018-19244-x, 2018.

37. Schaeffer, A. J., and S. Lebedev, Global shear speed structure of the upper mantle and transition zone, Geophysical Journal International, 194(1), 417-449, doihttps://doi.org/10.1093/gji/ggt095, 2013.

38. Shapiro, N. M., and M. H. Ritzwoller, Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica, Earth and Planetary Science Letters, 223(1), 213-224, doi:https://doi.org/10. 1016/j.epsl.2004.04.011, 2004.

39. Turcotte, D. L., and G. Schubert, Geodynamics, Journal of Fluid Mechanics, 477, 410-411, doi:10.1017/ S0022112002223708, 2003.

40. Westermann, S., J. Lüers, M. Langer, K. Piel, and J. Boike, The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway, The Cryosphere, 3(2), 245-263, doihttps://doi.org/10.5194/tc-3-245-2009, 2009.

Login or Create
* Forgot password?