Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences (Laboratory of Geochemistry of Noble and Rare Elements (218), Research Fellow)
from 01.01.2012 until now
Russian Federation
Russian Federation
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The lakes of the Kulunda plain have long attracted the attention of researchers. A detailed 10 geochemical testing of a chain of four small soda lakes of the Tanatar group allowed answering a 11 number of questions. We used a complex of modern methods of mineralogy and geochemistry to 12 update and add new data on the main phases of bottom sediments. The studied lakes have a pH ≥ 8 13 and a TDS of 2.1–41.5 g/L and a soda water composition. It has been established that over the 14 past ∼ 100 years there has been no change in the mineral composition of bottom sediments. The 15 main phases of the bottom sediments consist of intermediate and high – Mg calcite and Ca-excess 16 dolomite. Magnesite is presented only as a small impurity. The formation and accumulation of these 17 minerals occur throughout the core of bottom sediments. According to received data, a change in the 18 hydrological regime of the catchment area was established. The feeding regime of the lakes has been 19 changed because of the drying up of the Rublevaya River.
small soda lakes, bottom sediments, high-magnesium carbonates, Ca-excess dolomite, Tanatar lakes, Kulunda plain
1. Bartosiewicz, M., I. Laurion, and S. MacIntyre (2015), Greenhouse gas emission and storage in a small shallow lake, Hydrobiologia, 757(1), 101-115, https://doi.org/10.1007/s10750-015-2240-2.; ; EDN: https://elibrary.ru/USMXAA
2. Borzenko, S. V. (2020), Principal Parameters Controlling Water Composition in Saline and Brackish Lakes in Eastern Transbaikalia, Geochemistry International, 58(12), 1356-1373, https://doi.org/10.1134/s0016702920090037.; DOI: https://doi.org/10.1134/S0016702920090037; EDN: https://elibrary.ru/JDDKXK
3. Chagas, A. A. P., G. E. Webb, R. V. Burne, and G. Southam (2016), Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy, Earth-Science Reviews, 162, 338-363, https://doi.org/10.1016/ j.earscirev.2016.09.012.
4. Deelman, J. C. (2011), Low-temperature formation of dolomite and magnesite, Compact Disc Publications, Geology Series, Eindhoven, Netherlands.
5. Fussmann, D., A. J. E. von Hoyningen-Huene, A. Reimer, D. Schneider, H. Babková, R. Peticzka, A. Maier, G. Arp, R. Daniel, and P. Meister (2020), Authigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl, Austria, Biogeosciences, 17(7), 2085-2106, https://doi.org/10.5194/bg-17-2085-2020.; ; EDN: https://elibrary.ru/ISRVLM
6. Galbarczyk-Gąsiorowska, L., M. Gąsiorowski, and K. Szeroczyńska (2009), Reconstruction of human influence during the last two centuries on two small oxbow lakes near Warsaw (Poland), Hydrobiologia, 631(1), 173-183, https://doi.org/10 .1007/s10750-009-9809-6.
7. Gas’kova, O. L., V. D. Strakhovenko, and E. A. Ovdina (2017), Composition of brines and mineral zoning of the bottom sediments of soda lakes in the Kulunda steppe (West Siberia), Russian Geology and Geophysics, 58(10), 1199-1210, https://doi.org/10.1016/j.rgg.2016.09.034.; ; EDN: https://elibrary.ru/UYKQMB
8. Gavshin, V. M., B. L. Scherbov, M. S. Melgunov, V. D. Strakhovenko, V. A. Bobrov, and V. M. Tsibulchik (1999), 137Cs and 210Pb in lake sediments of the Steppe Altai as indicators of the dynamics of the anthropogenic changes in the geochemical background during the XX century, Russian Geology and Geophysics, pp. 1331-1341.
9. Hammer, U. T. (1986), Saline lake ecosystems of the world, Springer Dordrecht.
10. International Lake Environment Committee Foundation (ILEC) (1999), World Lake Database, https://wldb.ilec.or.jp/.
11. Ivanov, P. V. (1948), Classification of lakes of the world by size and by their average depth, Bulletin of LSU, 20, 29-36 (in Russian).
12. Izmailova, A. V., and N. Y. Korneenkova (2020), Lake Area Percentage in Russian Federation Territory and Its Governing Factors, Water Resources, 47(1), 13-21, https://doi.org/10.1134/s009780782001008x.; DOI: https://doi.org/10.1134/S009780782001008X; EDN: https://elibrary.ru/MZQKOG
13. Kelts, K., and K. J. Hsü (1978), Freshwater Carbonate Sedimentation, in Lakes, pp. 295-323, Springer New York, https://doi.org/10.1007/978-1-4757-1152-3_9.
14. Kharlamova, N. F. (2019), Climatic Variability of the Kulunda Steppe, in KULUNDA: Climate Smart Agriculture, pp. 19-32, Springer International Publishing, https://doi.org/10.1007/978-3-030-15927-6_3.
15. Kolpakova, M. N., S. L. Shvartsev, S. V. Borzenko, V. P. Isupov, and S. S. Shatskaya (2016), Geochemical features of Kulunda plain lakes (Altay region, Russia), IOP Conference Series: Earth and Environmental Science, 33, 012,007, https://doi.org/10.1088/1755-1315/33/1/012007.; ; EDN: https://elibrary.ru/WUDZBN
16. Kompantseva, E. I., A. V. Komova, I. I. Rusanov, N. V. Pimenov, and D. Y. Sorokin (2009), Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai krai), Microbiology, 78(5), 643-649, https://doi.org/10.1134/S002626170905018X.; ; EDN: https://elibrary.ru/MWTIZD
17. Korde, N. V. (1969), Biostratigraphy and typology of Russian sapropels, Publishing House of the USSR Academy of Sciences, Moscow (in Russian).
18. Kurlov, M. G. (1928), Classification of Siberian healing mineral waters, Publishing House of the Physiotherapy Institute in Tomsk, Tomsk (in Russian).
19. Kurnakov, N. S. (Ed.) (1935), Kulunda Expedition of the USSR Academy of Sciences 1931-1933. Part 3: Study of the soil-geomorphological cycle, Publishing House of the USSR Academy of Sciences (in Russian).
20. Last, F. M., W. M. Last, and N. M. Halden (2012), Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada, Sedimentary Geology, 281, 222-237, https://doi.org/10.1016/j.sedgeo.2012.09.012.
21. Lebedeva (Verba), M. P., O. V. Lopukhina, and N. V. Kalinina (2008), Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe, Eurasian Soil Science, 41(4), 416-428, https://doi.org/10.1134/s106422930804008x.
22. Lein, A. Y., N. A. Belyaev, M. D. Kravchishina, A. S. Savvichev, M. V. Ivanov, and A. P. Lisitsyn (2011), Isotopic markers of organic matter transformation at the water-sediment geochemical boundary, Doklady Earth Sciences, 436(1), 83-87, https://doi.org/10.1134/s1028334x11010156.; DOI: https://doi.org/10.1134/S1028334X11010156; EDN: https://elibrary.ru/OHTYYB
23. Nikol’skaya, Y. P. (1961), Processes of salt formation in lakes and waters of the Kulunda steppe, Publishing House of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk (in Russian).
24. Ovdina, E., V. Strakhovenko, and E. Solotchina (2020), Authigenic Carbonates in the Water-Biota-Bottom Sediments’ System of Small Lakes (South of Western Siberia), Minerals, 10(6), 552, https://doi.org/10.3390/min10060552.; ; EDN: https://elibrary.ru/NCZVAX
25. Samylina, O. S., F. V. Sapozhnikov, O. Y. Gainanova, A. V. Ryabova, M. A. Nikitin, and D. Y. Sorokin (2014), Algo- bacterial communities of the Kulunda steppe (Altai Region, Russia) Soda Lakes, Microbiology, 83(6), 849-860, https: //doi.org/10.1134/S0026261714060162.
26. Sapozhnikov, P. V., O. Y. Kalinina, M. A. Nikitin, and O. S. Samylina (2016), Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation), Oceanology, 56(1), 95-106, https://doi.org/10.1134/S000 1437016010173.; DOI: https://doi.org/10.1134/S0001437016010173; EDN: https://elibrary.ru/WSTKVJ
27. Savchenko, N. V. (1997), Lakes of the Southern Plains of Western Siberia, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (in Russian).
28. Solotchin, P. A., E. V. Sklyarov, E. P. Solotchina, and Y. N. Markova (2017), Carbonate sedimentation in shallow saline lakes of Western Transbaikalia: The response to Holocene climate changes, Doklady Earth Sciences, 473(2), 461-466, https://doi.org/10.1134/S1028334X17040213.; ; EDN: https://elibrary.ru/XNJFXJ
29. Solotchina, E. P., and P. A. Solotchin (2014), Composition and structure of low-temperature natural carbonates of the calcite-dolomite series, Journal of Structural Chemistry, 55(4), 779-785, https://doi.org/10.1134/S0022476614040295.; ; EDN: https://elibrary.ru/UFQIWX
30. Solotchina, E. P., M. I. Kuzmin, P. A. Solotchin, A. E. Maltsev, G. A. Leonova, and I. V. Danilenko (2019), Authigenic Carbonates from Holocene Sediments of Lake Itkul (South of West Siberia) as Indicators of Climate Changes, Doklady Earth Sciences, 487(1), 745-750, https://doi.org/10.1134/S1028334X19070079.; ; EDN: https://elibrary.ru/PYJQRL
31. Sorokin, D. Y., B. Abbas, M. Geleijnse, N. V. Pimenov, M. V. Sukhacheva, and M. C. M. van Loosdrecht (2015), Methano- genesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia), FEMS Microbiology Ecology, 91(4), https://doi.org/10.1093/femsec/fiv016.
32. Stankevica, K., Z. Vincevica-Gaile, M. Klavins, L. Kalnina, N. Stivrins, I. Grudzinska, and E. Kaup (2020), Accumulation of metals and changes in composition of freshwater lake organic sediments during the Holocene, Chemical Geology, 539, 119,502, https://doi.org/10.1016/j.chemgeo.2020.119502.; ; EDN: https://elibrary.ru/XTINYK
33. Strakhov, N. M. (1951), Calcareous-dolomite facies of modern and ancient reservoirs, Publishing House of the USSR Academy of Sciences, Moscow (in Russian).
34. Strakhovenko, V. D., B. L. Shcherbov, I. N. Malikova, and Y. S. Vosel’ (2010), The regularities of distribution of ra- dionuclides and rare-earth elements in bottom sediments of Siberian lakes, Russian Geology and Geophysics, 51(11), 1167-1178, https://doi.org/10.1016/j.rgg.2010.10.002.
35. Strakhovenko, V. D., O. P. Taran, and N. I. Ermolaeva (2014), Geochemical characteristics of the sapropel sediments of small lakes in the Ob’-Irtysh interfluve, Russian Geology and Geophysics, 55(10), 1160-1169, https://doi.org/10.1016/j. rgg.2014.09.002.; DOI: https://doi.org/10.1016/j.rgg.2014.09.002; EDN: https://elibrary.ru/UGIAMX
36. Strakhovenko, V. D., E. P. Solotchina, Y. S. Vosel’, and P. A. Solotchin (2015), Geochemical factors for endogenic mineral formation in the bottom sediments of the Tazheran lakes (Baikal area), Russian Geology and Geophysics, 56(10), 1437-1450, https://doi.org/10.1016/j.rgg.2015.09.006.; ; EDN: https://elibrary.ru/UZZWNJ
37. Strakhovenko, V. D., E. A. Ovdina, G. I. Malov, N. I. Yermolaeva, E. Y. Zarubina, O. P. Taran, and V. V. Boltenkov (2019), Genesis of Organomineral Deposits in Lakes of the Central Part of the Baraba Lowland (South of West Siberia), Russian Geology and Geophysics, 60(9), 978-989, https://doi.org/10.15372/rgg2019093.; DOI: https://doi.org/10.15372/RGG2019093; EDN: https://elibrary.ru/VCQQZX
38. Vernadsky, V. I. (1927), History of minerals of the Earth’s crust, Scientific chemical and technical publishing house, Leningrad (in Russian).
39. Wedepohl, K. H. (1995), The composition of the continental crust, Geochimica et Cosmochimica Acta, 59(7), 1217-1232, https://doi.org/10.1016/0016-7037(95)00038-2.; ; EDN: https://elibrary.ru/VJEBOP
40. Zavarzin, G. A., and T. N. Zhilina (2000), Soda lakes as a natural model of the ancient biosphere, Priroda, 2, 44-55 (in Russian).
41. Zheng, M. (2014), Saline lakes and salt basin deposits in China, Science Press, Beijing.