Theoretical and Experimental Modeling of Local Scale CO2 Flushing of Hydrous Rhyolitic Magma
Abstract and keywords
Abstract (English):
Flushing of hydrous silicic magmas with crustal carbonic fluid may be an important factor controlling the dynamics of rhyolitic eruptions. We present combined theoretical and experimental study of the interaction of carbonic fluid with a hydrous silicic melt. The process of diffusional equilibration of a CO2 bubble with a silicic melt was simulated numerically in the spherical shell approximation. The rapid water transfer from the melt to the bubble is followed by a slower diffusion of CO2 into the melt. The water distribution in the melt becomes almost uniform over a period proportional to the diffusional unit of time 0.14τw, determined by the initial inter-bubble distance W equal the distance between neighbor bubbles centers and the water diffusion coefficient Dw in the melt (τw = W 2/Dw), while the CO2 distribution remains strongly contrasting and the melt remains undersaturated in CO2. This process was modelled experimentally with a hydrous albite melt at P = 200MPa and T = 950–1000 °C. In the first series of experiments at T = 950◦C, a glass powder was filled with pure CO2 at the beginning of the experiment, forming numerous bubbles at the run temperature. Micro-FTIR measurements showed that after 40 minutes the water content in the melt decreased from 4.9 down to 1.8 wt. % with the maximum CO2 content of 500 ppm (below saturation). After 4 hours, the crystallinity increased to 85%, and almost all of the fluid bubbles escaped. The second series of experiments CO2 interacted with a 2 mm high column of hydrous albite melt. Diffusion profiles in the quenched glass were measured using EMPA (H2O) and micro-FTIR (CO2 and H2O). The estimated diffusion coefficients in the melt for H2O (1.1 × 10−6 cm2 /s) and CO2 (1.5 × 10−7 cm2 /s) are consistent with published data. Scaling analysis predicts that in the nature, after the influx of CO2 bubbles a few millimeters in size, the maximum dehydration of rhyolitic magma with viscosity near 105 Pa s without a significant increase in CO2 content occurs after 1–30 days, i.e. a period compatible with the minimum duration of pre-eruption processes in the magma chamber.

Keywords:
Carbon dioxide, explosive volcanic eruption, experiment in IHPV, diffusion of CO2 and H2O, magma flushing with CO2
Text
Publication text (PDF): Read Download
References

1. Acosta-Vigil, A., D. London, G. B. Morgan, and T. A. Dewers (2005), Dissolution of Quartz, Albite, and Orthoclase in H2O-Saturated Haplogranitic Melt at 800◦C and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Conditions, Journal of Petrology, 47(2), 231–254, https://doi.org/10.1093/petrology/egi073.

2. Barry, P. H., D. R. Hilton, E. Föri, S. A. Halldórsson, and K. Grönvold (2014), Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes, Geochimica et Cosmochimica Acta, 134, 74–99, https://doi.org/10.1016/j.gca.2014.02.038.

3. Befus, K. S., and J. E. Gardner (2016), Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera, Contributions to Mineralogy and Petrology, 171(4), https://doi.org/10.1007/s00410-016-1244-x.

4. Befus, K. S., and M. Manga (2019), Supereruption quartz crystals and the hollow reentrants, Geology, 47(8), 710–714, https://doi.org/10.1130/G46275.1

5. Behrens, H. (2010), Ar, CO2 and H2O diffusion in silica glasses at 2 kbar pressure, Chemical Geology, 272(1–4), 40–48, https://doi.org/10.1016/j.chemgeo.2010.02.001.

6. Behrens, H., C. Romano, M. Nowak, F. Holtz, and D. B. Dingwell (1996), Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study, Chemical Geology, 128(1–4), 41–63, https://doi.org/10.1016/0009-2541(95)00162-x.

7. Berkesi, M., T. Guzmics, C. Szabó, J. Dubessy, R. J. Bodnar, and other (2012), The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths, Earth and Planetary Science Letters, 331–332, 8–20, https://doi.org/10.1016/j.epsl.2012.03.012.

8. Botcharnikov, R., M. Freise, F. Holtz, and H. Behrens (2005), Solubility of C-O-H mixtures in natural melts: new experimental data and application range of recent models, Annals of Geophysics, 48(4/5), 633–646.

9. Caricchi, L., T. E. Sheldrake, and J. Blundy (2018), Modulation of magmatic processes by CO2 flushing, Earth and Planetary Science Letters, 491, 160–171, https://doi.org/10.1016/j.epsl.2018.03.042.

10. Cheng, A. H., M. A. Golberg, E. J. Kansa, and G. Zammito (2003), Exponential Convergence and H-C Multiquadric Collocation Method for Partial Differential Equations, Numerical Methods for Partial Differential Equations, 19(5), 571–594, https://doi.org/10.1002/num.10062.

11. Cichy, S. B., R. E. Botcharnikov, F. Holtz, and H. Behrens (2010), Vesiculation and Microlite Crystallization Induced by Decompression: a Case Study of the 1991–1995 Mt Unzen Eruption (Japan), Journal of Petrology, 52(7–8), 1469–1492, https://doi.org/10.1093/petrology/egq072.

12. Coenen, K., F. Gallucci, B. Mezari, E. Hensen, and M. van Sint Annaland (2018), An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites, Journal of CO2 Utilization, 24, 228–239, https://doi.org/10.1016/j.jcou.2018.01.008.

13. Couch, S. (2003), The Kinetics of Degassing-Induced Crystallization at Soufriere Hills Volcano, Montserrat, Journal of Petrology, 44(8), 1477–1502, https://doi.org/10.1093/petrology/44.8.1477.

14. Coumans, J. P., E. W. Llewellin, F. B. Wadsworth, M. C. S. Humphreys, S. A. Mathias, B. M. Yelverton, and J. E. Gardner (2020), An experimentally validated numerical model for bubble growth in magma, Journal of Volcanology and Geothermal Research, 402, 107,002, https://doi.org/10.1016/j.jvolgeores.2020.107002.

15. Dallai, L., R. Cioni, C. Boschi, and C. D’Oriano (2011), Carbonate-derived CO2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy, Earth and Planetary Science Letters, 310(1–2), 84–95, https://doi.org/10.1016/j.epsl.2011.07.013.

16. Frezzotti, M.-L., and J. L. R. Touret (2014), CO2, carbonate-rich melts, and brines in the mantle, Geoscience Frontiers, 5(5), 697–710, https://doi.org/10.1016/j.gsf.2014.03.014.

17. Frezzotti, M. L., A. Peccerillo, and G. Panza (2010), Earth’s CO2 degassing in Italy, Journal of the Virtual Explorer, 36, https://doi.org/10.3809/jvirtex.2010.00227.

18. Gurenko, A. A. (2021), Origin of sulphur in relation to silicate-sulphide immiscibility in Tolbachik primitive arc magma (Kamchatka, Russia): Insights from sulphur and boron isotopes, Chemical Geology, 576, 120,244, https://doi.org/10.1016/j.chemgeo.2021.120244.

19. Hidas, K., T. Guzmics, C. Szabó, I. Kovács, R. J. Bodnar, and other (2010), Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary), Chemical Geology, 274(1–2), 1–18, https://doi.org/10.1016/j.chemgeo.2010.03.004.

20. Holland, T. (2001), Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset, Journal of Petrology, 42(4), 673–683, https://doi.org/10.1093/petrology/42.4.673.

21. Hui, H., and Y. Zhang (2007), Toward a general viscosity equation for natural anhydrous and hydrous silicate melts, Geochimica et Cosmochimica Acta, 71(2), 403–416, https://doi.org/10.1016/j.gca.2006.09.003.

22. Kerrick, D. M., and G. K. Jacobs (1981), A modified Redlich-Kwong equation for H2O, CO2 , and H2O–CO2 mixtures at elevated pressures and temperatures, American Journal of Science, 281, 735–767.

23. King, P. L., and J. R. Holloway (2002), CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition, Geochimica et Cosmochimica Acta, 66(9), 1627–1640, https://doi.org/10.1016/S0016-7037(01)00872-9.

24. Konschak, A., and H. Keppler (2014), The speciation of carbon dioxide in silicate melts, Contributions to Mineralogy and Petrology, 167(5), https://doi.org/10.1007/s00410-014-0998-2.

25. Longpré, M.-A., J. Stix, A. Klügel, and N. Shimizu (2017), Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands, Earth and Planetary Science Letters, 460, 268–280, https://doi.org/10.1016/j.epsl.2016.11.043.

26. Lowenstern, J. B., and S. Hurwitz (2008), Monitoring a Supervolcano in Repose: Heat and Volatile Flux at the Yellowstone Caldera, Elements, 4(1), 35–40, https://doi.org/10.2113/gselements.4.1.35.

27. Lyakhovsky, V., S. Hurwitz, and O. Navon (1996), Bubble growth in rhyolitic melts: experimental and numerical investigation, Bulletin of Volcanology, 58(1), 19–32, https://doi.org/10.1007/s004450050122.

28. Mollo, S., M. Gaeta, C. Freda, T. D. Rocco, V. Misiti, and P. Scarlato (2010), Carbonate assimilation in magmas: A reappraisal based on experimental petrology, Lithos, 114(3–4), 503–514, https://doi.org/10.1016/j.lithos.2009.10.013.

29. Myers, M. L., P. J. Wallace, C. J. N. Wilson, B. K. Morter, and E. J. Swallow (2016), Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone, Earth and Planetary Science Letters, 451, 285–297, https://doi.org/10.1016/j.epsl.2016.07.023.

30. Narine, S. S., K. L. Humphrey, and L. Bouzidi (2006), Modification of the Avrami model for application to the kinetics of the melt crystallization of lipids, Journal of the American Oil Chemists’ Society, 83(11), 913–921, https://doi.org/10.1007/s11746-006-5046-6.

31. Navon, O., A. Chekhmir, and V. Lyakhovsky (1998), Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas, Earth and Planetary Science Letters, 160(3–4), 763–776, https://doi.org/10.1016/s0012-821x(98)00126-5.

32. Neukampf, J., O. Laurent, P. Tollan, A.-S. Bouvier, T. Magna, and other (2022), Degassing from magma reservoir to eruption in silicic systems: The Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a Yellowstone rhyolite, Geochimica et Cosmochimica Acta, 326, 56–76, https://doi.org/10.1016/j.gca.2022.03.037.

33. Newman, S., and J. B. Lowenstern (2002), VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel, Computers & Geosciences, 28(5), 597–604, https://doi.org/10.1016/s0098-3004(01)00081-4.

34. Pichavant, M., I. Di Carlo, S. G. Rotolo, B. Scaillet, A. Burgisser, N. Le Gall, and C. Martel (2013), Generation of CO2- rich melts during basalt magma ascent and degassing, Contributions to Mineralogy and Petrology, 166(2), 545–561, https://doi.org/10.1007/s00410-013-0890-5

35. Ruefer, A. C., K. S. Befus, J. O. Thompson, and B. J. Andrews (2021), Implications of Multiple Disequilibrium Textures in Quartz-Hosted Embayments, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.742895.

36. Rusiecka, M. K., and D. R. Baker (2021), Growth and textural evolution during crystallization of quartz and feldspar in hydrous, rhyolitic melt, Contributions to Mineralogy and Petrology, 176(7), https://doi.org/10.1007/s00410-021-01809-1.

37. Simakin, A., H. Schmeling, and V. Trubitsyn (1997), Convection in melts due to sedimentary crystal flux from above, Physics of the Earth and Planetary Interiors, 102(3–4), 185–200, https://doi.org/10.1016/S0031-9201(97)00010-1.

38. Simakin, A. G., and I. N. Bindeman (2022), Convective Melting and Water Behavior around Magmatic-Hydrothermal Transition: Numerical Modeling with Application to Krafla Volcano, Iceland, Journal of Petrology, 63(8), https://doi.org/10.1093/petrology/egac074.

39. Simakin, A. G., and V. Y. Chevychelov (1995), Experimental studies of feldspar crystallization of granite melts of varied water content, Geokhimiya, (2), 216–237.

40. Simakin, A. G., and A. Ghassemi (2018), Mechanics of Magma Chamber with the Implication of the Effect of CO2 Fluxing, in Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health, chap. 9, pp. 175–207, InTech, https://doi.org/10.5772/intechopen.71655.

41. Simakin, A. G., P. Armienti, and M. B. Epelbaum (1999), Coupled degassing and crystallization: experimental study at continuous pressure drop, with application to volcanic bombs, Bulletin of Volcanology, 61(5), 275–287, https://doi.org/10.1007/s004450050297.

42. Simakin, A. G., T. P. Salova, and G. V. Bondarenko (2012), Experimental study of magmatic melt oxidation by CO2, Petrology, 20(7), 593–606, https://doi.org/10.1134/S0869591112070053.

43. Simakin, A. G., V. N. Devyatova, and A. N. Nekrasov (2020), Crystallization of Cpx in the Ab-Di System Under the Oscillating Temperature: Contrast Dynamic Modes at Different Periods of Oscillation, pp. 97–120, Springer International Publishing, https://doi.org/10.1007/978-3-030-42859-4_5.

44. Stolper, E. M., G. Fine, T. Johnson, and S. Newman (1987), Solubility of carbon dioxide in albitic melt, American Mineralogist, (72), 1071–1085.

45. Swanson, S. E., and P. M. Fenn (1986), Quartz crystallization in igneous rocks, American Mineralogist, 71(3-4), 331–342.

46. Wallace, P. J., A. T. Anderson, and A. M. Davis (1995), Quantification of pre-eruptive exsolved gas contents in silicic magmas, Nature, 377(6550), 612–616, https://doi.org/10.1038/377612a0.

47. Wang, X., I.-M. Chou, W. Hu, R. C. Burruss, Q. Sun, and Y. Song (2011), Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations, Geochimica et Cosmochimica Acta, 75(14), 4080–4093, https://doi.org/10.1016/j.gca.2011.04.028.

48. Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochemistry, Geophysics, Geosystems, 4(7), https://doi.org/10.1029/2002gc000473.

49. Yamamoto, J., and H. Kagi (2006), Extended Micro-Raman Densimeter for CO2 Applicable to Mantle-originated Fluid Inclusions, Chemistry Letters, 35(6), 610–611, https://doi.org/10.1246/cl.2006.610.

50. Yinnon, H., and D. R. Uhlmann (1983), Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory, Journal of Non-Crystalline Solids, 54(3), 253–275, https://doi.org/10.1016/0022-3093(83)90069-8.

51. Yoshimura, S., and M. Nakamura (2010), Chemically driven growth and resorption of bubbles in a multivolatile magmatic system, Chemical Geology, 276, 18–28.

52. Zanotto, E. D., and D. R. Cassar (2017), The microscopic origin of the extreme glass-forming ability of Albite and B2O3, Scientific Reports, 7(1), https://doi.org/10.1038/srep43022.

53. Zelenski, M., A. Simakin, Y. Taran, V. S. Kamenetsky, and N. Malik (2021), Partitioning of elements between hightemperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry, Geochimica et Cosmochimica Acta, 295, 112–134, https://doi.org/10.1016/j.gca.2020.12.011.

54. Zelenski, M., V. S. Kamenetsky, N. Nekrylov, and A. Kontonikas-Charos (2022), High Sulfur in Primitive Arc Magmas, Its Origin and Implications, Minerals, 12(1), 37, https://doi.org/10.3390/min12010037.

55. Zhang, Y., and H. Ni (2010), Diffusion of H, C, and O Components in Silicate Melts, Reviews in Mineralogy and Geochemistry, 72(1), 171–225, https://doi.org/10.2138/rmg.2010.72.5.

Login or Create
* Forgot password?