с 01.01.1981 по 01.01.2023
Черноголовка, г. Москва и Московская область, Россия
Россия
УДК 55 Геология. Геологические и геофизические науки
УДК 552 Петрография
УДК 550.4.02 Практическая и экспериментальная геохимия
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Flushing of hydrous silicic magmas with crustal carbonic fluid may be an important factor controlling the dynamics of rhyolitic eruptions. We present combined theoretical and experimental study of the interaction of carbonic fluid with a hydrous silicic melt. The process of diffusional equilibration of a CO2 bubble with a silicic melt was simulated numerically in the spherical shell approximation. The rapid water transfer from the melt to the bubble is followed by a slower diffusion of CO2 into the melt. The water distribution in the melt becomes almost uniform over a period proportional to the diffusional unit of time 0.14τw, determined by the initial inter-bubble distance W equal the distance between neighbor bubbles centers and the water diffusion coefficient Dw in the melt (τw = W 2/Dw), while the CO2 distribution remains strongly contrasting and the melt remains undersaturated in CO2. This process was modelled experimentally with a hydrous albite melt at P = 200MPa and T = 950–1000 °C. In the first series of experiments at T = 950◦C, a glass powder was filled with pure CO2 at the beginning of the experiment, forming numerous bubbles at the run temperature. Micro-FTIR measurements showed that after 40 minutes the water content in the melt decreased from 4.9 down to 1.8 wt. % with the maximum CO2 content of 500 ppm (below saturation). After 4 hours, the crystallinity increased to 85%, and almost all of the fluid bubbles escaped. The second series of experiments CO2 interacted with a 2 mm high column of hydrous albite melt. Diffusion profiles in the quenched glass were measured using EMPA (H2O) and micro-FTIR (CO2 and H2O). The estimated diffusion coefficients in the melt for H2O (1.1 × 10−6 cm2 /s) and CO2 (1.5 × 10−7 cm2 /s) are consistent with published data. Scaling analysis predicts that in the nature, after the influx of CO2 bubbles a few millimeters in size, the maximum dehydration of rhyolitic magma with viscosity near 105 Pa s without a significant increase in CO2 content occurs after 1–30 days, i.e. a period compatible with the minimum duration of pre-eruption processes in the magma chamber.
Carbon dioxide, explosive volcanic eruption, experiment in IHPV, diffusion of CO2 and H2O, magma flushing with CO2
1. Acosta-Vigil, A., D. London, G. B. Morgan, and T. A. Dewers (2005), Dissolution of Quartz, Albite, and Orthoclase in H2O-Saturated Haplogranitic Melt at 800◦C and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Conditions, Journal of Petrology, 47(2), 231–254, https://doi.org/10.1093/petrology/egi073.
2. Barry, P. H., D. R. Hilton, E. Föri, S. A. Halldórsson, and K. Grönvold (2014), Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes, Geochimica et Cosmochimica Acta, 134, 74–99, https://doi.org/10.1016/j.gca.2014.02.038.; ; EDN: https://elibrary.ru/SPJDHH
3. Befus, K. S., and J. E. Gardner (2016), Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera, Contributions to Mineralogy and Petrology, 171(4), https://doi.org/10.1007/s00410-016-1244-x.; ; EDN: https://elibrary.ru/JOZPGS
4. Befus, K. S., and M. Manga (2019), Supereruption quartz crystals and the hollow reentrants, Geology, 47(8), 710–714, https://doi.org/10.1130/G46275.1; ; EDN: https://elibrary.ru/XEBARB
5. Behrens, H. (2010), Ar, CO2 and H2O diffusion in silica glasses at 2 kbar pressure, Chemical Geology, 272(1–4), 40–48, https://doi.org/10.1016/j.chemgeo.2010.02.001.
6. Behrens, H., C. Romano, M. Nowak, F. Holtz, and D. B. Dingwell (1996), Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study, Chemical Geology, 128(1–4), 41–63, https://doi.org/10.1016/0009-2541(95)00162-x.; DOI: https://doi.org/10.1016/0009-2541(95)00162-X; EDN: https://elibrary.ru/XZUDNS
7. Berkesi, M., T. Guzmics, C. Szabó, J. Dubessy, R. J. Bodnar, and other (2012), The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths, Earth and Planetary Science Letters, 331–332, 8–20, https://doi.org/10.1016/j.epsl.2012.03.012.; ; EDN: https://elibrary.ru/RMSFZH
8. Botcharnikov, R., M. Freise, F. Holtz, and H. Behrens (2005), Solubility of C-O-H mixtures in natural melts: new experimental data and application range of recent models, Annals of Geophysics, 48(4/5), 633–646.
9. Caricchi, L., T. E. Sheldrake, and J. Blundy (2018), Modulation of magmatic processes by CO2 flushing, Earth and Planetary Science Letters, 491, 160–171, https://doi.org/10.1016/j.epsl.2018.03.042.; ; EDN: https://elibrary.ru/YIAVED
10. Cheng, A. H., M. A. Golberg, E. J. Kansa, and G. Zammito (2003), Exponential Convergence and H-C Multiquadric Collocation Method for Partial Differential Equations, Numerical Methods for Partial Differential Equations, 19(5), 571–594, https://doi.org/10.1002/num.10062.
11. Cichy, S. B., R. E. Botcharnikov, F. Holtz, and H. Behrens (2010), Vesiculation and Microlite Crystallization Induced by Decompression: a Case Study of the 1991–1995 Mt Unzen Eruption (Japan), Journal of Petrology, 52(7–8), 1469–1492, https://doi.org/10.1093/petrology/egq072.; ; EDN: https://elibrary.ru/OKZGTF
12. Coenen, K., F. Gallucci, B. Mezari, E. Hensen, and M. van Sint Annaland (2018), An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites, Journal of CO2 Utilization, 24, 228–239, https://doi.org/10.1016/j.jcou.2018.01.008.; ; EDN: https://elibrary.ru/YGJRXV
13. Couch, S. (2003), The Kinetics of Degassing-Induced Crystallization at Soufriere Hills Volcano, Montserrat, Journal of Petrology, 44(8), 1477–1502, https://doi.org/10.1093/petrology/44.8.1477.; ; EDN: https://elibrary.ru/LXEQEV
14. Coumans, J. P., E. W. Llewellin, F. B. Wadsworth, M. C. S. Humphreys, S. A. Mathias, B. M. Yelverton, and J. E. Gardner (2020), An experimentally validated numerical model for bubble growth in magma, Journal of Volcanology and Geothermal Research, 402, 107,002, https://doi.org/10.1016/j.jvolgeores.2020.107002.; ; EDN: https://elibrary.ru/NEHZOT
15. Dallai, L., R. Cioni, C. Boschi, and C. D’Oriano (2011), Carbonate-derived CO2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy, Earth and Planetary Science Letters, 310(1–2), 84–95, https://doi.org/10.1016/j.epsl.2011.07.013.; ; EDN: https://elibrary.ru/PMCTBZ
16. Frezzotti, M.-L., and J. L. R. Touret (2014), CO2, carbonate-rich melts, and brines in the mantle, Geoscience Frontiers, 5(5), 697–710, https://doi.org/10.1016/j.gsf.2014.03.014.; ; EDN: https://elibrary.ru/UWSHRF
17. Frezzotti, M. L., A. Peccerillo, and G. Panza (2010), Earth’s CO2 degassing in Italy, Journal of the Virtual Explorer, 36, https://doi.org/10.3809/jvirtex.2010.00227.
18. Gurenko, A. A. (2021), Origin of sulphur in relation to silicate-sulphide immiscibility in Tolbachik primitive arc magma (Kamchatka, Russia): Insights from sulphur and boron isotopes, Chemical Geology, 576, 120,244, https://doi.org/10.1016/j.chemgeo.2021.120244.; ; EDN: https://elibrary.ru/RSCDNY
19. Hidas, K., T. Guzmics, C. Szabó, I. Kovács, R. J. Bodnar, and other (2010), Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary), Chemical Geology, 274(1–2), 1–18, https://doi.org/10.1016/j.chemgeo.2010.03.004.; ; EDN: https://elibrary.ru/MXXOAH
20. Holland, T. (2001), Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset, Journal of Petrology, 42(4), 673–683, https://doi.org/10.1093/petrology/42.4.673.; EDN: https://elibrary.ru/IVUFEL
21. Hui, H., and Y. Zhang (2007), Toward a general viscosity equation for natural anhydrous and hydrous silicate melts, Geochimica et Cosmochimica Acta, 71(2), 403–416, https://doi.org/10.1016/j.gca.2006.09.003.; ; EDN: https://elibrary.ru/KEPOXX
22. Kerrick, D. M., and G. K. Jacobs (1981), A modified Redlich-Kwong equation for H2O, CO2 , and H2O–CO2 mixtures at elevated pressures and temperatures, American Journal of Science, 281, 735–767.
23. King, P. L., and J. R. Holloway (2002), CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition, Geochimica et Cosmochimica Acta, 66(9), 1627–1640, https://doi.org/10.1016/S0016-7037(01)00872-9.; EDN: https://elibrary.ru/AXHLCL
24. Konschak, A., and H. Keppler (2014), The speciation of carbon dioxide in silicate melts, Contributions to Mineralogy and Petrology, 167(5), https://doi.org/10.1007/s00410-014-0998-2.; ; EDN: https://elibrary.ru/SUBENW
25. Longpré, M.-A., J. Stix, A. Klügel, and N. Shimizu (2017), Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands, Earth and Planetary Science Letters, 460, 268–280, https://doi.org/10.1016/j.epsl.2016.11.043.
26. Lowenstern, J. B., and S. Hurwitz (2008), Monitoring a Supervolcano in Repose: Heat and Volatile Flux at the Yellowstone Caldera, Elements, 4(1), 35–40, https://doi.org/10.2113/gselements.4.1.35.
27. Lyakhovsky, V., S. Hurwitz, and O. Navon (1996), Bubble growth in rhyolitic melts: experimental and numerical investigation, Bulletin of Volcanology, 58(1), 19–32, https://doi.org/10.1007/s004450050122.; EDN: https://elibrary.ru/AWVQYB
28. Mollo, S., M. Gaeta, C. Freda, T. D. Rocco, V. Misiti, and P. Scarlato (2010), Carbonate assimilation in magmas: A reappraisal based on experimental petrology, Lithos, 114(3–4), 503–514, https://doi.org/10.1016/j.lithos.2009.10.013.; ; EDN: https://elibrary.ru/MZEYHR
29. Myers, M. L., P. J. Wallace, C. J. N. Wilson, B. K. Morter, and E. J. Swallow (2016), Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone, Earth and Planetary Science Letters, 451, 285–297, https://doi.org/10.1016/j.epsl.2016.07.023.; ; EDN: https://elibrary.ru/XUESSL
30. Narine, S. S., K. L. Humphrey, and L. Bouzidi (2006), Modification of the Avrami model for application to the kinetics of the melt crystallization of lipids, Journal of the American Oil Chemists’ Society, 83(11), 913–921, https://doi.org/10.1007/s11746-006-5046-6.
31. Navon, O., A. Chekhmir, and V. Lyakhovsky (1998), Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas, Earth and Planetary Science Letters, 160(3–4), 763–776, https://doi.org/10.1016/s0012-821x(98)00126-5.; EDN: https://elibrary.ru/ABRLLT
32. Neukampf, J., O. Laurent, P. Tollan, A.-S. Bouvier, T. Magna, and other (2022), Degassing from magma reservoir to eruption in silicic systems: The Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a Yellowstone rhyolite, Geochimica et Cosmochimica Acta, 326, 56–76, https://doi.org/10.1016/j.gca.2022.03.037.; ; EDN: https://elibrary.ru/MOAGRU
33. Newman, S., and J. B. Lowenstern (2002), VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel, Computers & Geosciences, 28(5), 597–604, https://doi.org/10.1016/s0098-3004(01)00081-4.
34. Pichavant, M., I. Di Carlo, S. G. Rotolo, B. Scaillet, A. Burgisser, N. Le Gall, and C. Martel (2013), Generation of CO2- rich melts during basalt magma ascent and degassing, Contributions to Mineralogy and Petrology, 166(2), 545–561, https://doi.org/10.1007/s00410-013-0890-5; ; EDN: https://elibrary.ru/VFILRK
35. Ruefer, A. C., K. S. Befus, J. O. Thompson, and B. J. Andrews (2021), Implications of Multiple Disequilibrium Textures in Quartz-Hosted Embayments, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.742895.; ; EDN: https://elibrary.ru/JRVYXP
36. Rusiecka, M. K., and D. R. Baker (2021), Growth and textural evolution during crystallization of quartz and feldspar in hydrous, rhyolitic melt, Contributions to Mineralogy and Petrology, 176(7), https://doi.org/10.1007/s00410-021-01809-1.; ; EDN: https://elibrary.ru/ERGVYE
37. Simakin, A., H. Schmeling, and V. Trubitsyn (1997), Convection in melts due to sedimentary crystal flux from above, Physics of the Earth and Planetary Interiors, 102(3–4), 185–200, https://doi.org/10.1016/S0031-9201(97)00010-1.; ; EDN: https://elibrary.ru/LEMZRP
38. Simakin, A. G., and I. N. Bindeman (2022), Convective Melting and Water Behavior around Magmatic-Hydrothermal Transition: Numerical Modeling with Application to Krafla Volcano, Iceland, Journal of Petrology, 63(8), https://doi.org/10.1093/petrology/egac074.; ; EDN: https://elibrary.ru/ZTWPBG
39. Simakin, A. G., and V. Y. Chevychelov (1995), Experimental studies of feldspar crystallization of granite melts of varied water content, Geokhimiya, (2), 216–237.
40. Simakin, A. G., and A. Ghassemi (2018), Mechanics of Magma Chamber with the Implication of the Effect of CO2 Fluxing, in Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health, chap. 9, pp. 175–207, InTech, https://doi.org/10.5772/intechopen.71655.
41. Simakin, A. G., P. Armienti, and M. B. Epelbaum (1999), Coupled degassing and crystallization: experimental study at continuous pressure drop, with application to volcanic bombs, Bulletin of Volcanology, 61(5), 275–287, https://doi.org/10.1007/s004450050297.; ; EDN: https://elibrary.ru/LFHCIL
42. Simakin, A. G., T. P. Salova, and G. V. Bondarenko (2012), Experimental study of magmatic melt oxidation by CO2, Petrology, 20(7), 593–606, https://doi.org/10.1134/S0869591112070053.; ; EDN: https://elibrary.ru/RGJNRR
43. Simakin, A. G., V. N. Devyatova, and A. N. Nekrasov (2020), Crystallization of Cpx in the Ab-Di System Under the Oscillating Temperature: Contrast Dynamic Modes at Different Periods of Oscillation, pp. 97–120, Springer International Publishing, https://doi.org/10.1007/978-3-030-42859-4_5.
44. Stolper, E. M., G. Fine, T. Johnson, and S. Newman (1987), Solubility of carbon dioxide in albitic melt, American Mineralogist, (72), 1071–1085.
45. Swanson, S. E., and P. M. Fenn (1986), Quartz crystallization in igneous rocks, American Mineralogist, 71(3-4), 331–342.
46. Wallace, P. J., A. T. Anderson, and A. M. Davis (1995), Quantification of pre-eruptive exsolved gas contents in silicic magmas, Nature, 377(6550), 612–616, https://doi.org/10.1038/377612a0.
47. Wang, X., I.-M. Chou, W. Hu, R. C. Burruss, Q. Sun, and Y. Song (2011), Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations, Geochimica et Cosmochimica Acta, 75(14), 4080–4093, https://doi.org/10.1016/j.gca.2011.04.028.; ; EDN: https://elibrary.ru/PMIDLF
48. Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochemistry, Geophysics, Geosystems, 4(7), https://doi.org/10.1029/2002gc000473.; DOI: https://doi.org/10.1029/2002GC000473; EDN: https://elibrary.ru/MYGLJR
49. Yamamoto, J., and H. Kagi (2006), Extended Micro-Raman Densimeter for CO2 Applicable to Mantle-originated Fluid Inclusions, Chemistry Letters, 35(6), 610–611, https://doi.org/10.1246/cl.2006.610.; ; EDN: https://elibrary.ru/MJWCQP
50. Yinnon, H., and D. R. Uhlmann (1983), Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory, Journal of Non-Crystalline Solids, 54(3), 253–275, https://doi.org/10.1016/0022-3093(83)90069-8.; ; EDN: https://elibrary.ru/XWFNIJ
51. Yoshimura, S., and M. Nakamura (2010), Chemically driven growth and resorption of bubbles in a multivolatile magmatic system, Chemical Geology, 276, 18–28.
52. Zanotto, E. D., and D. R. Cassar (2017), The microscopic origin of the extreme glass-forming ability of Albite and B2O3, Scientific Reports, 7(1), https://doi.org/10.1038/srep43022.; ; EDN: https://elibrary.ru/YWQTKX
53. Zelenski, M., A. Simakin, Y. Taran, V. S. Kamenetsky, and N. Malik (2021), Partitioning of elements between hightemperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry, Geochimica et Cosmochimica Acta, 295, 112–134, https://doi.org/10.1016/j.gca.2020.12.011.; ; EDN: https://elibrary.ru/FFQQJA
54. Zelenski, M., V. S. Kamenetsky, N. Nekrylov, and A. Kontonikas-Charos (2022), High Sulfur in Primitive Arc Magmas, Its Origin and Implications, Minerals, 12(1), 37, https://doi.org/10.3390/min12010037.; ; EDN: https://elibrary.ru/RBUPHX
55. Zhang, Y., and H. Ni (2010), Diffusion of H, C, and O Components in Silicate Melts, Reviews in Mineralogy and Geochemistry, 72(1), 171–225, https://doi.org/10.2138/rmg.2010.72.5.; ; EDN: https://elibrary.ru/OMCMYF